Skip to main content
Advanced Search

Filters: Tags: scenario (X)

314 results (87ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The GeoAdaptive and GeoDesign scenarios were extended to the state of Florida line and incorporated CLIP 3.0 into the scenarios for the ecological input. The scenarios will consist of urbanization level of 31,000,000 people by 2060 and sea level rise of 1.0m, and policies and assumptions such a build first conserve second (BAU) and conserve first build second (proactive). The type of conservation was varied; fee simple purchase and easement percentages. The first scenario had a 50/50 split between fee simple purchase and easements and the second and third scenario had 90% easement and 10% fee simple purchase. The difference in scenario was in the process of conservation (CLIP priority area 1 or Florida Forever land...
The paper traces the manner in which an obligation came to be imposed on select industries, requiring them to take account of amenity, wildlife and outdoor-recreational interests in the course of preparing and carrying out developmental schemes. Under pressure from the relevant voluntary bodies, the statutory obligations, first imposed on hydro-electric power development, were generalized to cover 'whole' industries, and then, under the Countryside Acts of 1967-68, were extended to all State utilities. The recent privatization of those industries has provided a further pretext for extending and strengthening the 'amenity' clause. The approach has provided important insights into how industry itself might become...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
This dataset represents presence of white pine (Pinus strobus) at year 100 (2095) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
Ken Ferschweiler (CBI) used climate data from the PRISM group (Chris Daly, Oregon State University) at 4kmx4km spatial grain across the conterminous USA to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling and created anomalies from the Hadley CM3 General Circulation Model (GCM) run through the A2 emission scenario (SRES - special report on emission scenarios published in 2000). To run the MAPSS model (Neilson 1995), average monthly precipitation values were calculated for the period 2045-2060. This dataset shows the standard deviation of the annual precipitation for that period.
thumbnail
This dataset represents presence of Jack Pine (Pinus banksiana) in Minnesota (USA) at year 50 (2045) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Sugar Maple (Acer saccharum) in Minnesota (USA) at year 0 (2145) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
The Vista tool is used to create a Scenario of CAs affecting the Terrestrial Montane Lifezone Distribution CE and applies user-input Landscape Condition Model (LCM) scores to generate an Ecological Integrity Assessment (EIA) for the CE. The LCM consists of Site Impact scores and impact Distances for each CA category. Site Impact scores are a value between 0 and 1 representing the impact of the CA on the relevant CEs. A score close to 1 indicates negligible or no impact from that CA. A score close to 0 indicates the highest possible impact, e.g. an interstate highway that makes the area in which it occurs completely unsuitable for the CE. Distances are set in meters and extend the impact of the CA from the footprint...
thumbnail
The Vista tool is used to create a Scenario of the CAs affecting the North American Warm Desert Lower Montane Riparian Woodland, Shrubland and Stream CE and applies user-input Landscape Condition Model (LCM) scores to generate ESAs for each of the CEs. The LCM consists of Site Impact scores and impact Distances for each CA category. Site Impact scores are a value between 0 and 1 representing the impact of the CA on the relevant CEs. A score close to 1 indicates negligible or no impact from that CA. A score close to 0 indicates the highest possible impact, e.g. an interstate highway that makes the area in which it occurs completely unsuitable for the CE. Distances are set in meters and extend the impact of the CA...
thumbnail
The Vista tool is used to create a Scenario of the invasives CAs affecting the Pronghorn (Antilocapra americana) CE and applies user-input Landscape Condition Model (LCM) scores to generate ESAs for each of the CEs. The LCM consists of Site Impact scores and impact Distances for each CA category. Site Impact scores are a value between 0 and 1 representing the impact of the CA on the relevant CEs. A score close to 1 indicates negligible or no impact from that CA. A score close to 0 indicates the highest possible impact, e.g. an interstate highway that makes the area in which it occurs completely unsuitable for the CE. Distances are set in meters and extend the impact of the CA from the footprint out for the specified...
thumbnail
The Vista tool is used to create a Scenario of the invasives CAs affecting the Mogollon Chaparral CE and applies user-input Landscape Condition Model (LCM) scores to generate ESAs for each of the CEs. The LCM consists of Site Impact scores and impact Distances for each CA category. Site Impact scores are a value between 0 and 1 representing the impact of the CA on the relevant CEs. A score close to 1 indicates negligible or no impact from that CA. A score close to 0 indicates the highest possible impact, e.g. an interstate highway that makes the area in which it occurs completely unsuitable for the CE. Distances are set in meters and extend the impact of the CA from the footprint out for the specified distance,...


map background search result map search result map Standard Deviation of Annual Precipitation (2045-2060) from HadCM3 GCM under A2 scenario (Western USA) Hot, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for spineless horsebrush (Tetradymia canescens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Warm, dry scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Warm, dry scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for sugar pine (Pinus lambertiana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for lodgepole pine (Pinus contorta murrayana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, wet scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Minnesota (USA) Climate Change Project: White Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Jack Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Sugar Maple at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Florida climate change, urbanization, and policy assumption scenario for conservation planning for the PFLCC. BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment: North American Warm Desert Lower Montane Riparian Woodland, Shrubland and Stream 30m BLM REA MAR 2012 Ecological Integrity Assessment (EIA): Terrestrial Montane Lifezone BLM REA MAR 2012 Terrestrial Ecosystem Ecological Status Assessment of invasives CAs: Mogollon Chaparral BLM REA MAR 2012 Ecological Status Assessment based on invasives: Pronghorn (Antilocapra americana) Hot, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for spineless horsebrush (Tetradymia canescens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Warm, dry scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Warm, dry scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for sugar pine (Pinus lambertiana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for lodgepole pine (Pinus contorta murrayana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, wet scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections BLM REA MAR 2012 Ecological Status Assessment based on invasives: Pronghorn (Antilocapra americana) Minnesota (USA) Climate Change Project: Sugar Maple at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: White Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Jack Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity BLM REA MAR 2012 Aquatic Ecosystem Ecological Status Assessment: North American Warm Desert Lower Montane Riparian Woodland, Shrubland and Stream 30m BLM REA MAR 2012 Terrestrial Ecosystem Ecological Status Assessment of invasives CAs: Mogollon Chaparral BLM REA MAR 2012 Ecological Integrity Assessment (EIA): Terrestrial Montane Lifezone Florida climate change, urbanization, and policy assumption scenario for conservation planning for the PFLCC. Standard Deviation of Annual Precipitation (2045-2060) from HadCM3 GCM under A2 scenario (Western USA)