Skip to main content
Advanced Search

Filters: Tags: geodesign (X)

11 results (139ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Well-established conservation planning principles and techniques framed by geodesign were used to assess the restorability of areas that historically supported coastal wetlands along the U.S. shore of Saginaw Bay. The resulting analysis supported planning efforts to identify, prioritize, and track wetland restoration opportunity and investment in the region. To accomplish this, publicly available data, criteria derived from the regional managers and local stakeholders, and geospatial analysis were used to form an ecological model for spatial prioritization.
thumbnail
This dataset is the output of a python script/ArcGIS model that identifes dikes as having a difference in elevation above a certain threshold. If the elevation difference was below a certain threshold the area was not considered a dike; however, if the difference in elevation between two points was significantly high then the area was marked as a dike. Areas continuous with eachother were considered part of the same dike. Post processing occured. Users examined the data output, comparing the proposed dike locations to aerial imagery, flowline data, and the DEM. Dikes that appeared to be false positives were deleted from the data set.
thumbnail
This dataset is the output of a python script/ArcGIS model that identifes dikes as having a difference in elevation above a certain threshold. If the elevation difference was below a certain threshold the area was not considered a dike; however, if the difference in elevation between two points was significantly high then the area was marked as a dike. Areas continuous with eachother were considered part of the same dike. Post processing occured. Users examined the data output, comparing the proposed dike locations to aerial imagery, flowline data, and the DEM. Dikes that appeared to be false positives were deleted from the data set.
thumbnail
An experienced team of wetland ecologists, geographers, and software engineers used a geodesign process to develop and host a web-based geospatial application that will support the identification and restoration of potential coastal wetlands (i.e., areas that could be restored to coastal wetlands if hydrologically connected to the Great Lakes) along the U.S. coast of the Great Lakes. Techniques, data types, and analysis approaches used in the recent Western Lake Erie Restoration Assessment (WLERA) model are being extended to include other priority coastal areas of the Great Lakes. The first phase of the work produced three restoration assessments for the pilot area identified by the LCC Coastal Working Group (U.S....
thumbnail
This represents the flowline network in Western Lale Erie Restoration Assessment (WLERA). It is attributed with the number of disconnections between the reach and the connecting river system. These data will help identify the condition of hydrologic separation between potential restoration areas and the connecting river system. Low numbers represent fewer disconnections such as culverts between the reach and the rivers requiring no flow network modification to restore the area.
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Artificial Path, Canal / Ditch, FWHydrography, Great Lakes, Hydrography, All tags...
Well-established conservation planning principles and techniques framed by geodesign were used to assess the restorability of areas that historically supported coastal wetlands along the U.S. shore of the connecting rivers (Detroit River and St. Clair River). The resulting analysis supported planning efforts to identify, prioritize, and track wetland restoration opportunity and investment in the region. To accomplish this, publicly available data, criteria derived from the regional managers and local stakeholders, and geospatial analysis were used to form an ecological model for spatial prioritization.
thumbnail
This represents the flowline network in Connecting River Systems Restoration Assessment (CRSRA). It is attributed with the number of disconnections between the reach and the connecting river system. These data will help identify the condition of hydrologic separation between potential restoration areas and the connecting river system. Low numbers represent fewer disconnections such as culverts between the reach and the rivers requiring no flow network modification to restore the area.
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Artificial Path, Canal / Ditch, Detroit River, FWHydrography, Great Lakes, All tags...
thumbnail
This represents the flowline network in Sagina Bay Restoration Assessment (SBRA). It is attributed with the number of disconnections between the reach and the connecting river system. These data will help identify the condition of hydrologic separation between potential restoration areas and the connecting river system. Low numbers represent fewer disconnections such as culverts between the reach and the rivers requiring no flow network modification to restore the area.
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Artificial Path, Canal / Ditch, FWHydrography, Great Lakes, Hydrography, All tags...
thumbnail
This dataset is the output of a python script/ArcGIS model that identifes dikes as having a difference in elevation above a certain threshold. If the elevation difference was below a certain threshold the area was not considered a dike; however, if the difference in elevation between two points was significantly high then the area was marked as a dike. Areas continuous with eachother were considered part of the same dike. Post processing occured. Users examined the data output, comparing the proposed dike locations to aerial imagery, flowline data, and the DEM. Dikes that appeared to be false positives were deleted from the data set.
Well-established conservation planning principles and techniques framed by geodesign were used to assess the restorability of areas that historically supported coastal wetlands along the U.S. shore of western Lake Erie. The resulting analysis supported planning efforts to identify, prioritize, and track wetland restoration opportunity and investment in the region. To accomplish this, publicly available data, criteria derived from the regional managers and local stakeholders, and geospatial analysis were used to form an ecological model for spatial prioritization (Western Lake Erie Restoration Assessmente (WLERA)). Within the 192,618 ha study area that was bounded by the mouths of the Detroit River, MI to the north...
thumbnail
This is one of three possible future land use scenarios for Florida over the next 50 years produced for conservation planning purposes. Â In this scenario, there is "business as usual" development at current densities following medium trend population estimates. Â Conservation is split evenly between fee-simple and easements, allocated according to the "Florida Forever" program priorities at a rate of 30k acres/yr.


    map background search result map search result map Peninsular Florida LCC Scenario 1 Guiding Great Lakes Coastal Wetlands Restoration through Geodesign Saginaw Bay Restoration Assessment Degree Flowlines Saginaw Bay Restoration Assessment Dikes Connecting River Systems Restoration Assessment Degree Flowlines Connecting River Systems Restoration Assessment Dikes Western Lake Erie Restoration Assessment Degree Flowlines Western Lake Erie Restoration Assessment Dikes Connecting River Systems Restoration Assessment Dikes Connecting River Systems Restoration Assessment Degree Flowlines Western Lake Erie Restoration Assessment Dikes Western Lake Erie Restoration Assessment Degree Flowlines Saginaw Bay Restoration Assessment Dikes Saginaw Bay Restoration Assessment Degree Flowlines Guiding Great Lakes Coastal Wetlands Restoration through Geodesign Peninsular Florida LCC Scenario 1