Skip to main content
Advanced Search

Filters: Tags: Rhizosphere (X)

8 results (58ms)   

View Results as: JSON ATOM CSV
The most common system responses attributed to microfloral grazers (protozoa, nematodes, microarthropods) in the literature are increased plant growth, increased N uptake by plants, decreased or increased bacterial populations, increased CO2 evolution, increased N and P mineralization, and increased substrate utilization. Based on this evidence in the literature, a conceptual model was proposed in which microfloral grazers were considered as separate state variables. To help evaluate the model, the effects of microbivorous nematodes on microbial growth, nutrient cycling, plant growth, and nutrient uptake were examined with reference to activities within and outside of the rhizosphere. Blue grama grass (Bouteloua...
The rhizosphere differs from the bulk soil in a range of biochemical, chemical and physical processes that occur as a consequence of root growth, water and nutrient uptake, respiration and rhizodeposition. These processes also affect microbial ecology and plant physiology to a considerable extent. This review concentrates on two features of this unique environment: rhizosphere geometry and heterogeneity in both space and time. Although it is often depicted as a soil cylinder of a given radius around the root, drawing a boundary between the rhizosphere and bulk soil is an impossible task because rhizosphere processes result in gradients of different sizes. For instance, because of diffusional constraints, root uptake...
Prolonged use of broad-spectrum antibiotics has led to the emergence of drug-resistant pathogens, both in medicine and in agriculture. New threats such as biological warfare have increased the need for novel and efficacious antimicrobial agents. Natural habitats not previously examined as sources of novel antibiotic-producing microorganisms still exist. One such habitat is the rhizosphere of desert shrubs. Here, we show that one desert shrub habitat, the rhizosphere of desert big sagebrush (Artemisia tridentata) is a source of actinomycetes capable of producing an extensive array of antifungal metabolites. Culturable microbial populations from both the sagebrush rhizosphere and nearby bulk soils from three different...
Transitions between atmosphere and soil, and between soil and roots, are two examples of small-scale boundaries across which the nutrient, water, and gas dynamics of ecosystems are modulated. Most atmospheric inputs to ecosystems have to pass through the soil; thus, the atmosphere?soil boundary influences the type and amount of materials and energy entering the soil. Belowground plant inputs occur through the rhizosphere, the zone of soil immediately adjacent to the root. This soil boundary layer affects root inputs to soil and root extraction of water and nutrients from soil. We discuss how water, carbon, nitrogen, and oxygen dynamics are affected by atmosphere?soil and soil?root boundaries and how light, soil...
Atmospheric particulate matter (PM) is a heterogeneous material. Though regulated as un-speciated mass, it exerts most effects on vegetation and ecosystems by virtue of the mass loading of its chemical constituents. As this varies temporally and spatially, prediction of regional impacts remains difficult. Deposition of PM to vegetated surfaces depends on the size distribution of the particles and, to a lesser extent, on the chemistry. However, chemical loading of an ecosystem may be determined by the size distribution as different constituents dominate different size fractions. Coating with dust may cause abrasion and radiative heating, and may reduce the photosynthetically active photon flux reaching the photosynthetic...
Although the link between the nitrogen (N): phosphorus (P) stoichiometry of biota and availability has received considerable attention in aquatic systems, there has been relatively little effort to compare the elemental composition of biota and supply in terrestrial habitats. In this study, I explored the effects of a prominent topo-edaphic gradient, from dry hilltop to wet slope-base, and native ungulates on N and P of soils, plants, and rates of in situ net mineralization in grasslands of Yellowstone National Park. Nitrogen and P measurements were made May?September, 2000, in paired, grazed and 38?42 year fenced, ungrazed grassland at five topographically variable sites. Similar to findings from other grassland...
Impounded tidal conditions often compromise coastal marsh restoration goals, through vegetation loss and other biogeochemical feedbacks. To determine if episodic marsh impoundments could be partially responsible for the observed cordgrass (Spartina foliosa) dieback at Crissy Field, Golden Gate National Recreation Area, we examined sulfur chemistry and plant stress along transects between and during tidal inlet closure events from 2007 to 2008. During closures, porewater sulfide (PW S2−) concentrations did not respond consistently among sites, nor did they increase to levels likely to cause stress damage to cordgrass (>1 mM). However, sediment solid-phase total reduced sulfur (TRS) concentrations did respond strongly...
In most soils, inorganic phosphorus occurs at fairly low concentrations in the soil solution whilst a large proportion of it is more or less strongly held by diverse soil minerals. Phosphate ions can indeed be adsorbed onto positively charged minerals such as Fe and Al oxides. Phosphate (P) ions can also form a range of minerals in combination with metals such as Ca, Fe and Al. These adsorption/desorption and precipitation/dissolution equilibria control the concentration of P in the soil solution and, thereby, both its chemical mobility and bioavailability. Apart from the concentration of P ions, the major factors that determine those equilibria as well as the speciation of soil P are (i) the pH, (ii) the concentrations...