Skip to main content
Advanced Search

Filters: partyWithName: Pacific Coastal and Marine Science Center (X) > Categories: Data (X) > Types: OGC WMS Layer (X)

312 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2015 (USGS Field Activity Number 2015-647-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 28 August 2014 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (5-8 September 2014) for areas < MHHW and aerial lidar surveys (7 November 2014) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (30 September 2014) for elevations > MHHW.
thumbnail
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 11 September 2009 1 meter resolution NAIP aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (17 September 2009) for areas < MHHW and aerial lidar surveys (4-6 April 2009) for elevations > MHHW.
thumbnail
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 26 August 2013 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (16 September 2013) for areas < MHHW and aerial lidar surveys (17 October 2012) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (19 September 2013) for elevations > MHHW.
thumbnail
This portion of the USGS data release presents bathymetric data collected during surveys performed on the Elwha River delta, Washington in 2022 (USGS Field Activity Number 2022-638-FA). Bathymetric data were collected using personal watercraft (PWCs) and a kayak equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers.
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California...


map background search result map search result map CoSMoS 3.0 Phase 2 flood hazard projections: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 wave-hazard projections: 20-year storm in Santa Barbara County CoSMoS v3.0 flood depth and duration projections: 1-year storm in Channel Islands CoSMoS 3.0 Phase 2 flood depth and duration projections: 1-year storm in Ventura County CoSMoS 3.0 Phase 2 flood hazard projections: 1-year storm in Ventura County Geomorphic habitat units derived from 2009 aerial imagery and elevation data for the Elwha River estuary, Washington Geomorphic habitat units derived from 2013 aerial imagery and elevation data for the Elwha River estuary, Washington Geomorphic habitat units derived from 2014 aerial imagery and elevation data for the Elwha River estuary, Washington Vegetation habitat units derived from 2009 aerial imagery and field data for the Elwha River estuary, Washington Vegetation habitat units derived from 2013 aerial imagery and field data for the Elwha River estuary, Washington CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: 100-year storm in Orange County CoSMoS v3.0 water level projections: 1-year storm in Channel Islands CoSMoS v3.0 flood hazard projections: 20-year storm in Channel Islands CoSMoS v3.0 ocean-currents hazards: 100-year storm in Channel Islands Beach topography of the Columbia River littoral cell, Washington and Oregon, 2015 CoSMoS v3.1 water level projections: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 1-year storm in San Mateo County CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Francisco County Nearshore bathymetry data from the Elwha River delta, Washington, August 2022 Vegetation habitat units derived from 2013 aerial imagery and field data for the Elwha River estuary, Washington Vegetation habitat units derived from 2009 aerial imagery and field data for the Elwha River estuary, Washington Geomorphic habitat units derived from 2009 aerial imagery and elevation data for the Elwha River estuary, Washington Geomorphic habitat units derived from 2013 aerial imagery and elevation data for the Elwha River estuary, Washington Geomorphic habitat units derived from 2014 aerial imagery and elevation data for the Elwha River estuary, Washington Nearshore bathymetry data from the Elwha River delta, Washington, August 2022 CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Francisco County CoSMoS v3.1 wave-hazard projections: 1-year storm in San Mateo County CoSMoS v3.1 water level projections: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 flood depth and duration projections: 1-year storm in Ventura County CoSMoS 3.0 Phase 2 flood hazard projections: 1-year storm in Ventura County Beach topography of the Columbia River littoral cell, Washington and Oregon, 2015 CoSMoS 3.0 Phase 2 flood hazard projections: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 wave-hazard projections: 20-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: 100-year storm in Orange County CoSMoS v3.0 flood depth and duration projections: 1-year storm in Channel Islands CoSMoS v3.0 water level projections: 1-year storm in Channel Islands CoSMoS v3.0 flood hazard projections: 20-year storm in Channel Islands CoSMoS v3.0 ocean-currents hazards: 100-year storm in Channel Islands