Skip to main content
Advanced Search

Filters: Tags: woods hole coastal and marine science center (X)

844 results (26ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods Hole Oceanographic Institute (WHOI) scientists conducted field surveys to re-map the field of view of the CoastCam. Aerial images of the beach for use in structure from motion were taken with a camera (Sony a6000)...
thumbnail
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods Hole Oceanographic Institution (WHOI) scientists conducted field surveys to re-map the field of view of the CoastCam. Aerial images of the beach for use in structure from motion were taken with a camera (Sony a6000)...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo uncrewed aircraft systems (UAS) on November 14, 2017 and March 28, 2019. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GR II digital camera for true color photos, which can be used to produce digital elevation models and ortho images, or a MicaSense RedEdge multispectral camera for five-banded imagery (blue, green, red, red edge, and near-infrared spectral bands), which can be used to...
thumbnail
The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management compiled Massachusetts vector shorelines into an updated dataset for the Office’s Shoreline Change Project. The Shoreline Change Project started in 1989 to identify erosion-prone areas of the Massachusetts coast by compiling a database of historical shoreline positions. Trends of shoreline position over long- and short-term timescales provide information to landowners, managers, and potential buyers about possible future changes to costal resources and infrastructure. This updated dataset strengthens the understanding of shoreline position change in Massachusetts. It includes U.S. Geological Survey vector shorelines...
thumbnail
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research on the Quaternary evolution of coastal Massachusetts, resolve the influence of sea-level change and sediment supply on coastal evolution, and strengthen efforts to understand the type, distribution, and quality of subtidal marine habitats. This collaboration produces high-resolution geologic data that serve the needs of...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Atlantic Ocean, CMHRP, CZM, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to a derivation of sediments that have been transported to, and deposited in, a basal bowl-shaped depression since the last glacial maximum. Ninety-two piston, vibra-, and gravity cores with a maximum length of 8.2...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to...
thumbnail
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project.There is no widely accepted standard for analyzing shoreline...
thumbnail
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the landslide complex. Sedimentological and geotechnical characterization of the cores was carried out through whole core imaging and description, followed by analysis of discrete samples at the USGS Woods Hole Coastal and...
thumbnail
The data in this release map Marconi Beach, Head of the Meadow Beach, and Nauset Light Beach, in Cape Cod National Seashore (CACO), Massachusetts, before and after Hurricane Lee in September 2023. U.S Geological Survey personnel conducted field surveys to collect topographic data using global navigation satellite systems (GNSS) at all three beaches. In addition, at Nauset Light Beach, an uncrewed aerial system (UAS) was used to collect images with a Ricoh GRII camera for use in structure from motion photogrammetry. High-precision GNSS targets (AeroPoints) were used as ground control points (GCPs) for the UAS photogrammetry. Agisoft Metashape (v. 2.0.1) software was used to create a digital surface model and an orthomosaic...
thumbnail
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used to identify sediment texture and sea-floor habitats.
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, Beckman Coulter Multisizer 3, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and backscatter, and subsurface stratigraphy associated with known and undiscovered sea-floor methane seeps. The first cruise, known as the Interagency Mission for Methane Research on Seafloor Seeps and designated as field...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Accomac Canyon, Applied Acoustics, Atlantic Margin, Atlantic Ocean, Baltimore Canyon, All tags...
thumbnail
The U.S. Geological Survey, Woods Hole Coastal and Marine Science Center in cooperation with the University of Maine mapped approximately 50 square kilometers of the seafloor within Belfast Bay, Maine. Three geophysical surveys conducted in 2006, 2008 and 2009 collected swath bathymetric (2006 and 2008) and chirp seismic reflection profile data (2006 and 2009). The project characterized the spatial, morphological and subsurface variability of the Belfast Bay, Maine pockmark field. Pockmarks are large seafloor depressions that are associated with seabed fluid escape.


map background search result map search result map WA Short Term Shoreline Change Multibeam bathymetry and backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder Multibeam bathymetric data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid) Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files) Ultra-short baseline - navigation points and tracklines for Applied Acoustics EasyTrack Nexus 2 USBL data collected for ROV Global Explorer during USGS field activity 2017-001-FA Seismic reflection-tracklines, shotpoints, and profile images collected in Belfast Bay, Maine using an EdgeTech SB-424 subbottom profiler during USGS field activities 2006-024-FA and 2009-037-FA (Esri polyline, and point shapefiles, WGS 84, and JPEG images) Summary of analytical data for sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA Historical shoreline positions for the coast of MA, from 1844 - 2014 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Multispectral aerial imagery collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), Massachusetts, November 14, 2017 and March 28, 2019 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, MA in March 2022, U.S. Geological Survey Field Activity 2022-015-FA Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, on March 18, 2022 Multibeam backscatter data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA using a Teledyne SeaBat Integrated Dual-Head (IDH) T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 19N, WGS 84, 1-m resolution) A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Multi-sensor core logger (MSCL) data of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Low-altitude aerial imagery collected from a UAS at Nauset Light Beach, Eastham, MA on September 14 and 20, 2023, pre and post Hurricane Lee Low-altitude aerial imagery collected from a UAS at Nauset Light Beach, Eastham, MA on September 14 and 20, 2023, pre and post Hurricane Lee Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, MA in March 2022, U.S. Geological Survey Field Activity 2022-015-FA Multispectral aerial imagery collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), Massachusetts, November 14, 2017 and March 28, 2019 Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, on March 18, 2022 Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files) Summary of analytical data for sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) Ultra-short baseline - navigation points and tracklines for Applied Acoustics EasyTrack Nexus 2 USBL data collected for ROV Global Explorer during USGS field activity 2017-001-FA Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s WA Short Term Shoreline Change Historical shoreline positions for the coast of MA, from 1844 - 2014 Multi-sensor core logger (MSCL) data of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA Multibeam bathymetry and backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder Multibeam bathymetric data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)