Skip to main content
Advanced Search

Filters: Tags: wildfire (X)

514 results (382ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Geospatial data were developed to characterize pre-fire biomass, burn severity, and biomass consumed for the Black Dragon Fire that burned in northern China in 1987. Pre-fire aboveground tree biomass (Mh/ha) raster data were derived by relating plot-level forest inventory data with pre-fire Landsat imagery from 1986 and 1987. Biomass data were generated for individual species: Dahurian larch (Larix gmelinii Rupr. Kuzen), white birch (Betula platyphylla Suk), aspen (Populus davidiana Dode and Populus suaveolens Fischer), and Mongolian Scots pine (Pinus sylvestris var. mongolica Litvinov). A raster layer of total aboveground tree biomass was also generated. Burned area was manually delineated using the normalized...
thumbnail
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. The USGS conducts post-fire debris-flow hazard assessments for select fires in the Western U.S. We use geospatial data related to basin morphometry, burn severity, soil properties, and rainfall characteristics to estimate the probability and volume of debris flows that may occur in response to a design storm.
thumbnail
Burn probability (BP) raster dataset predicted for the 2080-2100 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. This dataset presents projections of historic and future fire probability for the southcentral U.S. using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM, Guyette et al., 2012). Climate data from 1900-1929 and projected climate data for 2040-2069 and 2070-2099 were used as model inputs to the Physical Chemistry Fire Frequency Model (Guyette et al. 2012) to estimate fire probability. Baseline and future time period data are from three global climate models (GCMs): CGCM, GFDL, and HadCM3. The nine associated data sets (tiffs) represent estimated change in mean fire probability...
thumbnail
Burn probability (BP) for Fireline Intensity Class 2 (FIL2) with flame lengths in the range of 0.6-1.2 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
thumbnail
Wildfire and fuel treatment locations for the USFWS Pacific Southwest Region (California, Nevada, Klamath Basin OR) extracted from the Fire Management Information System (FMIS) on October 23, 2015, for fiscal years 1980-2015.
On August 25, 2015 speaker Matt Germino presented on his work restoring sagebrush in the Great Basin. Shrubs are ecosystem foundation species in most of the Great Basin’s landscapes. Most of the species, including sagebrush, are poorly adapted to the changes in fire and invasive pressures that are compounded by climate change. This presentation gives an overview of challenges and opportunities regarding restoration of sagebrush and blackbrush, focusing on climate adaptation, selection of seeds and achieving seeding and planting success. Results from Great Basin LCC supported research on seed selection and planting techniques are presented.
thumbnail
In Alaska, recent research has identified particular areas of the state where both a lack of soil moisture and warming temperatures increase the likelihood of wildfire. While this is an important finding, this previous research did not take into account the important role that melting snow, ice, and frozen ground (permafrost) play in replenshing soil moisture in the spring and summer months. This project will address this gap in the characterization of fire risk using the newly developed monthly water balance model (MWBM). The MWBM takes into account rain, snow, snowmelt, glacier ice melt, and the permafrost layer to better calculate soil moisture replenishment and the amount of moisture that is lost to the atmosphere...
thumbnail
Polygon locations of fire perimeters in the Sky Island mountain ranges in the Madrean Archipelago Ecoregion of the southwestern United States and northern Mexico. These fires occurred from 1985 to 2011 and were mapped using Landsat satellite imagery.
thumbnail
No abstract available at this time
Categories: Publication; Types: Citation; Tags: Wildfire
Mountain streams provide important habitats for many species, but their faunas are especially vulnerable to climate change because of ectothermic physiologies and movements that are constrained to linear networks that are easily fragmented. Effectively conserving biodiversity in these systems requires accurate downscaling of climatic trends to local habitat conditions, but downscaling is difficult in complex terrains given diverse microclimates and mediation of stream heat budgets by local conditions. We compiled a stream temperature database (n = 780) for a 2500-km river network in central Idaho to assess possible trends in summer temperatures and thermal habitat for two native salmonid species from 1993 to 2006....


map background search result map search result map Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015 Improving Characterizations of Future Wildfire Risk in Alaska Future changes in southcentral U.S. wildfire probability due to climate change-Data Mapped fire perimeters from the Sky Island Mountains of US and Mexico: 1985-2011 Pre-fire biomass, burn severity, biomass consumption, and fire perimeter data for the 1987 Black Dragon Fire in China Pre-fire biomass, burn severity, biomass consumption, and fire perimeter data for the 1987 Black Dragon Fire in China Mapped fire perimeters from the Sky Island Mountains of US and Mexico: 1985-2011 Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area Future changes in southcentral U.S. wildfire probability due to climate change-Data Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015 Improving Characterizations of Future Wildfire Risk in Alaska