Skip to main content
Advanced Search

Filters: Tags: wetland loss (X)

91 results (273ms)   

View Results as: JSON ATOM CSV
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
thumbnail
The dataset presented here represents a circa 1956 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The original dataset was created by the U.S. Fish and Wildlife Service, Office of Biological Services. The USGS Wetland and Aquatic Research Center altered the original data by improving the geo-rectification in specific areas known to contain geo-rectification error, most notably in coastal wetland areas in the vicinity of Four League Bay in western Terrebonne Basin. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
The dataset presented here represents a circa 1998 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset, refer to USGS SIM 3381.
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
These datasets were created from high-resolution (1-m) datasets representing median conditions during a 2014-2019 time period. These datasets used National Agricultural Inventory Program (NAIP) imagery, as well as Sentinel-2 satellite imagery, to estimate the fractional composition of unvegetated, vegetated, and water in each pixel. Random samples from these high resolution datasets were used to inform calibration and validation of the moderate resolution (30-m) Landsat datasets. To facilitate comparability with the Landsat datasets, these data were aggregated up to 30-m resolution.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
The tables presented here quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period by 10-digit Hydrologic Unit Code (HUC10) in the Gulf of Mexico. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
The dataset presented here represents a circa 2013 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset, refer to USGS SIM 3381.
thumbnail
The decline of Taxodium distichum, bald cypress, forests along the Gulf Coast of North America is partly due to elevation loss and subsequent flooding. In many coastal wetlands, a common approach for coastal restoration is to rebuild elevation through the application of dredge spoil, but this technique has not been used widely in coastal forests due to concerns of negatively impacting trees. This experiment explored health responses of Nyssa aquatica, water tupelo, and T. distichum saplings to applications of low salinity dredge spoil in a greenhouse setting. Compared to controls, saplings of T. distichum grown in 7 and 15 cm sediment depths had higher final heights, and stem and total biomass while N. aquatica...
thumbnail
The analyses of landscape change presented in this dataset use Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM) and Operational Land Imager (OLI) to assess changes in land area through time. All cloud-free dates of imagery from 1984 through early 2016 were used in this analysis. This amounted to a total of 174 dates of imagery which were analyzed. No water level restrictions were used during the image selection process as gages with a period of record sufficient for this analysis are not available nearby. Persistent loss and gain data are presented for 1984-2016.
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
thumbnail
The dataset presented here represents a circa 1973 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset, refer to USGS SIM 3381.
thumbnail
The dataset presented here represents a circa 1975 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset, refer to USGS SIM 3381.


map background search result map search result map Mississippi barrier island land area change 1984-2016 Data for sediment application to cypress and tupelo seedlings in greenhouse study - 2016 Circa 1973 Land Area in Coastal Louisiana - Spatial Data - Landsat MSS Circa 1998 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 2013 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 1975 Land Area in Coastal Louisiana - Spatial Data - Landsat MSS Circa 1956 Land Area in Coastal Louisiana - Original Data Source - National Wetlands Inventory - Revisions to Georectification An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2014 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2015 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2016 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2015 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Pacific Coast - 2018 A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Gulf of Mexico Coast, 2014-2019 used for calibration and validation of Landsat based datasets L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water Gulf of Mexico Land Area Change in Wetland Possible Zone by Hydrologic Unit Code (HUC) Tables Data for sediment application to cypress and tupelo seedlings in greenhouse study - 2016 Circa 2013 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 1956 Land Area in Coastal Louisiana - Original Data Source - National Wetlands Inventory - Revisions to Georectification Circa 1973 Land Area in Coastal Louisiana - Spatial Data - Landsat MSS Circa 1998 Land Area in Coastal Louisiana - Spatial Data - Landsat TM Circa 1975 Land Area in Coastal Louisiana - Spatial Data - Landsat MSS An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Pacific Coast - 2018 Gulf of Mexico Land Area Change in Wetland Possible Zone by Hydrologic Unit Code (HUC) Tables L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Gulf of Mexico Coast, 2014-2019 used for calibration and validation of Landsat based datasets An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2015 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2014 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2015 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2016