Skip to main content
Advanced Search

Filters: Tags: vegetation change (X) > Categories: Publication (X)

15 results (9ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Reports of decreasing quaking aspen (Populus tremuloides) cover in forests of the western USA have caused concern about the long-term persistence of aspen on landscape scales. We assessed changes in overstory aspen dominance on the Uncompahgre Plateau in western Colorado over a 20 year period. We measured stand density, species composition and regeneration in 53 undisturbed, mature pure aspen, pure conifer, and mixed aspen/conifer stands originally inventoried between 1979 and 1983. Ages of overstory and understory trees were used to evaluate long-term change in regeneration and overstory development. While pure aspen stands occupy 16% of the study area, mixed aspen and conifer stands cover 62% of the forested landscape...
Human activities have caused the decline of numerous species and ecosystems. To promote ecosystem resilience, recent management efforts aim to maintain ecosystem patterns and processes within their historical range of variability. There has been substantial concern that quaking aspen, the most widely distributed tree in North America and the most important deciduous tree in the subalpine forests of the Rocky Mountains, has declined significantly in the western landscape during the 20th century. This reported decline has been attributed to conifer encroachment associated with fire exclusion, as well as other causes. To assess long-term changes in the extent of quaking aspen in a 175000-ha study area in western Colorado,...
Evidence from woodrat middens and tree rings at Dutch John Mountain (DJM) in northeastern Utah reveal spatiotemporal patterns of pinyon pine (Pinus edulis Engelm.) colonization and expansion in the past millennium. The DJM population, a northern outpost of pinyon, was established by long-distance dispersal (approximately 40 km). Growth of this isolate was markedly episodic and tracked multidecadal variability in precipitation. Initial colonization occurred by AD 1246, but expansion was forestalled by catastrophic drought (1250-1288), which we speculate produced extensive mortality of Utah Juniper (Juniperus osteosperma (Torr.) Little), the dominant tree at DJM for the previous approximately 8700 years. Pinyon then...
thumbnail
Synopsis: This study analyzed the effects of vegetation change on hydrological fluctuations in the Columbia River basin over the last century using two land cover scenarios. The first scenario was a reconstruction of historical land cover vegetation, c. 1900. The second scenario was more recent land cover as estimated from remote sensing data for 1990. The results show that, hydrologically, the most important vegetation-related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime...
Increases in the abundance or density of woody plants in historically semiarid and arid grassland ecosystems have important ecological, hydrological, and socioeconomic implications. Using a simplified water-balance model, we propose a framework for conceptualizing how woody plant encroachment is likely to affect components of the water cycle within these ecosystems. We focus in particular on streamflow and the partitioning of evapotranspiration into evaporation and transpiration. On the basis of this framework, we suggest that streamflow and evaporation processes are affected by woody plant encroachment in different ways, depending on the degree and seasonality of aridity and the availability of subsurface water....
As the earth becomes a quilt of managed patches, ecohydrologists need to move from describing to predicting the consequences of human activities, using knowledge to improve human well-being. We highlight three current opportunities in ecohydrology. The first is the need for stronger research in arid and semi-arid ecosystems, where water is scarce and a tight coupling exists between hydrology and ecology. The second is to build better predictive frameworks for understanding the consequences of vegetation change. The new framework we propose here combines landscape connectivity, through recharge and discharge dynamics, with global climate. In systems where annual precipitation and evapotranspiration are similar, the...
thumbnail
The intense demand for river water in arid regions is resulting in widespread changes in riparian vegetation. We present a direct gradient method to predict the vegetation change resulting from a proposed upstream dam or diversion. Our method begins with the definition of vegetative cover types, based on a census of the existing vegetation in a set of 1 x 2 m plots. A hydraulic model determines the discharge necessary to inundate each plot. We use the hydrologic record, as defined by a flow duration curve, to determine the inundation duration for each plot. This allows us to position cover types along a gradient of inundation duration. A change in river management results in a new flow duration curve, which is used...
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species....
Understanding how annual climate variation affects population growth rates across a species’ range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species’ range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8175 observations of year-to-year change in...
Evidence from woodrat middens and tree rings at Dutch John Mountain (DJM) in northeastern Utah reveal spatiotemporal patterns of pinyon pine (Pinus edulis Engelm.) colonization and expansion in the past millennium. The DJM population, a northern outpost of pinyon, was established by long-distance dispersal (approximately 40 km). Growth of this isolate was markedly episodic and tracked multidecadal variability in precipitation. Initial colonization occurred by AD 1246, but expansion was forestalled by catastrophic drought (1250-1288), which we speculate produced extensive mortality of Utah Juniper (Juniperus osteosperma (Torr.) Little), the dominant tree at DJM for the previous approximately 8700 years. Pinyon then...
This publication identifies areas where big sagebrush populations are most and least vulnerable to climate change and demonstrates where continued investment in sagebrush conservation and restoration could have the most impact.
thumbnail
​Abstract: Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-02, AZ-03, AZ-04, Academics & scientific researchers, All tags...
thumbnail
Populus?Salix forests are a valued riparian vegetation type in western North America. These pioneer, obligate phreatophytes have declined on some rivers, raising conservation concerns and stimulating restoration plantings, but have increased on others. Understanding patterns and causes of forest change is essential for formulating conservation, restoration and management plans. Our goal was to assess spatio-temporal patterns of vegetation change on the Upper San Pedro River in semiarid Arizona, USA, one of the few undammed rivers in the region. Over 100 years ago, intense floods initiated channel incision and substantially altered hydrogeomorphology. Pioneer trees began to establish in the widening post-entrenchment...
thumbnail
Aim The recent concern that quaking aspen (Populus tremuloides Michx.) has been declining in parts of western North America due to fire suppression is largely based on trends during the latter part of the 20th century. The aim of the current study was to compare the extent of aspen in the modern landscape with its extent in the late 19th century prior to fire suppression, and to assess the effects of elevation, late-19th century fires, and pre-fire forest composition on the successional status of aspen. Location North-west Colorado, USA. Methods We used a georeferenced 1898 map and modern maps to examine trends in aspen dominance since the late 19th century in a 348,586 ha area of White River and Routt National...
We used co-located observations of snow depth, soil temperature, and moisture and energy fluxes to monitor variability in snowmelt infiltration and vegetation water use at mixed-conifer sub-alpine forest sites in the Valles Caldera, New Mexico (3020 m) and on Niwot Ridge, Colorado (3050 m). At both sites, vegetation structure largely controlled the distribution of snow accumulation with 29% greater accumulation in open versus under-canopy locations. Snow ablation rates were diminished by 39% in under-canopy locations, indicating increases in vegetation density act to extend the duration of the snowmelt season. Similarly, differences in climate altered snow-season duration, snowmelt infiltration and evapotranspiration....


    map background search result map search result map Influences of infrequent fire, elevation and pre-fire vegetation on the persistence of quaking aspen (Populus tremuloides Michx.) in the Flat Tops area, Colorado, USA Twenty-year change in aspen dominance in pure aspen and mixed aspen/conifer stands on the Uncompahgre Plateau, Colorado, USA Relating Riparian Vegetation to Present and Future Streamflows A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Publication and Report: Ecosystem Water Balance in a Desert Grassland Relating Riparian Vegetation to Present and Future Streamflows Influences of infrequent fire, elevation and pre-fire vegetation on the persistence of quaking aspen (Populus tremuloides Michx.) in the Flat Tops area, Colorado, USA A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA Twenty-year change in aspen dominance in pure aspen and mixed aspen/conifer stands on the Uncompahgre Plateau, Colorado, USA Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Publication and Report: Ecosystem Water Balance in a Desert Grassland