Filters: Tags: vegetation change (X)
107 results (28ms)
Filters
Date Range
Extensions Types
Contacts
Categories Tag Types
|
Reports of decreasing quaking aspen (Populus tremuloides) cover in forests of the western USA have caused concern about the long-term persistence of aspen on landscape scales. We assessed changes in overstory aspen dominance on the Uncompahgre Plateau in western Colorado over a 20 year period. We measured stand density, species composition and regeneration in 53 undisturbed, mature pure aspen, pure conifer, and mixed aspen/conifer stands originally inventoried between 1979 and 1983. Ages of overstory and understory trees were used to evaluate long-term change in regeneration and overstory development. While pure aspen stands occupy 16% of the study area, mixed aspen and conifer stands cover 62% of the forested landscape...
Categories: Publication;
Types: Citation,
Journal Citation;
Tags: Forest Ecology and Management,
Populus tremuloides Colorado,
aspen,
aspen decline,
vegetation change
Human activities have caused the decline of numerous species and ecosystems. To promote ecosystem resilience, recent management efforts aim to maintain ecosystem patterns and processes within their historical range of variability. There has been substantial concern that quaking aspen, the most widely distributed tree in North America and the most important deciduous tree in the subalpine forests of the Rocky Mountains, has declined significantly in the western landscape during the 20th century. This reported decline has been attributed to conifer encroachment associated with fire exclusion, as well as other causes. To assess long-term changes in the extent of quaking aspen in a 175000-ha study area in western Colorado,...
Categories: Publication;
Types: Citation,
Journal Citation;
Tags: Colorado,
Ecological Applications,
USA,
aspen,
fire,
Evidence from woodrat middens and tree rings at Dutch John Mountain (DJM) in northeastern Utah reveal spatiotemporal patterns of pinyon pine (Pinus edulis Engelm.) colonization and expansion in the past millennium. The DJM population, a northern outpost of pinyon, was established by long-distance dispersal (approximately 40 km). Growth of this isolate was markedly episodic and tracked multidecadal variability in precipitation. Initial colonization occurred by AD 1246, but expansion was forestalled by catastrophic drought (1250-1288), which we speculate produced extensive mortality of Utah Juniper (Juniperus osteosperma (Torr.) Little), the dominant tree at DJM for the previous approximately 8700 years. Pinyon then...
Categories: Publication;
Types: Citation,
Journal Citation;
Tags: Eco Soc America,
Ecology,
drought,
founder event,
paleoecology,
![]() These data are forecast barren land change under the PCM A2 scenarios, calculated using the outputs from runs of the USFS Pacific Northwest Research Station and WWETAC MC1 Vegetation model.MC1 Vegetation Model description: This collection of layers includes summary statistics from input and output data used for simulation of vegetation response to climate change in California. The simulations were performed using MC1 dynamic global vegetation model (DGVM), source code revision 152. The model was parameterized and evaluated by the DGVM research group at the US Forest Service Pacific Northwest Research Station, with support from the Western Wildland Environmental Threat Assessment Center. The model was parameterized...
![]() These data are forecast barren land change under the GFDL B1 scenarios, calculated using the outputs from runs of the USFS Pacific Northwest Research Station and WWETAC MC1 Vegetation model.MC1 Vegetation Model description: This collection of layers includes summary statistics from input and output data used for simulation of vegetation response to climate change in California. The simulations were performed using MC1 dynamic global vegetation model (DGVM), source code revision 152. The model was parameterized and evaluated by the DGVM research group at the US Forest Service Pacific Northwest Research Station, with support from the Western Wildland Environmental Threat Assessment Center. The model was parameterized...
![]() These data are forecast barren land change under the PCM A2&B1 scenarios, calculated using the outputs from runs of the USFS Pacific Northwest Research Station and WWETAC MC1 Vegetation model.MC1 Vegetation Model description: This collection of layers includes summary statistics from input and output data used for simulation of vegetation response to climate change in California. The simulations were performed using MC1 dynamic global vegetation model (DGVM), source code revision 152. The model was parameterized and evaluated by the DGVM research group at the US Forest Service Pacific Northwest Research Station, with support from the Western Wildland Environmental Threat Assessment Center. The model was parameterized...
This is a spatially-explicit state-and-transition simulation model (STSM) of sagebrush-steppe vegetation dynamics for greater sage-grouse (Centrocercus urophasianus) Priority Areas for Conservation (PACs) in the Great Basin. The STSM was built using the ST-Sim platform and uses an integrated stock-flow submodel (STSM-SF) to simulate and track continuous vegetation component cover changes caused by annual growth, natural regeneration, and post-fire sagebrush seeding and planting restoration. Spatially explicit models were built for three sage-grouse PACs (Klamath Oregon/California [KLAM], NW Interior Nevada [NWINV], Strawberry Utah [STRAW]) that differed in historic wildfire patterns and the amounts of various component...
Potential future greater sage-grouse (Centrocercus urophasianus) habitat restoration was projected (2018-2068) for three sage-grouse Priority Area for Conservation (PACs) populations located along the northwestern, central, and eastern edge of the Great Basin using outputs from a spatially explicit state-transition simulation model (STSM) developed for sagebrush ecosystems. These datasets, for the NW-Interior Nevada, USA (NWINV) sage-grouse population, include: 1) a set of 78 categorical raster layers illustrating a time series (decade intervals) of potential future habitat, and 2) a set of 15 uncategorized raster layers illustrating potential change in habitat classification across space, after simulating 50 years...
The RCMAP (Rangeland Condition Monitoring Assessment and Projection) dataset quantifies the percent cover of rangeland components across the western U.S. using Landsat imagery from 1985-2021. The RCMAP product suite consists of nine fractional components: annual herbaceous, bare ground, herbaceous, litter, non-sagebrush shrub, perennial herbaceous, sagebrush, shrub, and tree, in addition to the temporal trends of each component. Several enhancements were made to the RCMAP process relative to prior generations. First, we have trained time-series predictions directly from 331 high-resolution sites collected from 2013-2018 from Assessment, Inventory, and Monitoring (AIM) instead of using the 2016 “base” map as an intermediary....
Synopsis: This study analyzed the effects of vegetation change on hydrological fluctuations in the Columbia River basin over the last century using two land cover scenarios. The first scenario was a reconstruction of historical land cover vegetation, c. 1900. The second scenario was more recent land cover as estimated from remote sensing data for 1990. The results show that, hydrologically, the most important vegetation-related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime...
Categories: Publication;
Types: Citation,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: British Columbia,
Idaho,
Land use configuration,
Montana,
Natural cover amount,
Increases in the abundance or density of woody plants in historically semiarid and arid grassland ecosystems have important ecological, hydrological, and socioeconomic implications. Using a simplified water-balance model, we propose a framework for conceptualizing how woody plant encroachment is likely to affect components of the water cycle within these ecosystems. We focus in particular on streamflow and the partitioning of evapotranspiration into evaporation and transpiration. On the basis of this framework, we suggest that streamflow and evaporation processes are affected by woody plant encroachment in different ways, depending on the degree and seasonality of aridity and the availability of subsurface water....
Categories: Publication;
Types: Citation,
Journal Citation;
Tags: Ecological Society of America,
Ecology,
carbon cycling,
ecohydrology,
encroachment,
![]() This dataset combines the sensitive soils datasets for the Southern Rockies Landscape Conservation Cooperative, the projected future vegetation and the simulated historic potential natural vegetation, created using the MC2 dynamic global vegetation model. Colors represent unique combinations of vegetation change and the number of sensitive soil factors present in a given area.
![]() These data are forecast barren land change under the GFDL B1 scenarios, calculated using the outputs from runs of the USFS Pacific Northwest Research Station and WWETAC MC1 Vegetation model.MC1 Vegetation Model description: This collection of layers includes summary statistics from input and output data used for simulation of vegetation response to climate change in California. The simulations were performed using MC1 dynamic global vegetation model (DGVM), source code revision 152. The model was parameterized and evaluated by the DGVM research group at the US Forest Service Pacific Northwest Research Station, with support from the Western Wildland Environmental Threat Assessment Center. The model was parameterized...
These data were compiled for monitoring riparian vegetation change along the Colorado River. This file contains data recorded at 42 sandbars between Lees Ferry and Diamond Creek, AZ, which are sampled for both geomorphic and vegetation change annually. Field data contained here were collected from 2012 to 2016 in September and October of each year. Plant species cover values in 5441 1m^2 quadrat frames, locations and elevations of those sampling frames, slope and aspect, sample dates, temperature and precipitation data, and flood frequency parameters were either recorded in the field or calculated. Annual and seasonal climate variables were estimated from eight weather stations distributed along the river corridor...
The RCMAP (Rangeland Condition Monitoring Assessment and Projection) dataset quantifies the percent cover of rangeland components across the western U.S. using Landsat imagery from 1985-2021. The RCMAP product suite consists of nine fractional components: annual herbaceous, bare ground, herbaceous, litter, non-sagebrush shrub, perennial herbaceous, sagebrush, shrub, and tree, in addition to the temporal trends of each component. Several enhancements were made to the RCMAP process relative to prior generations. First, we have trained time-series predictions directly from 331 high-resolution sites collected from 2013-2018 from Assessment, Inventory, and Monitoring (AIM) instead of using the 2016 “base” map as an intermediary....
The need to monitor change in sagebrush steppe is urgent due to the increasing impacts of climate change, shifting fire regimes, and management practices on ecosystem health. Remote sensing provides a cost-effective and reliable method for monitoring change through time and attributing changes to drivers. We report an automated method of mapping rangeland fractional component cover over a large portion of the Northern Great Basin, USA, from 1986 to 2016 using a dense Landsat imagery time series. 2012 was excluded from the time-series due to a lack of quality imagery. Our method improved upon the traditional change vector method by considering the legacy of change at each pixel. We evaluate cover trends stratified...
As the earth becomes a quilt of managed patches, ecohydrologists need to move from describing to predicting the consequences of human activities, using knowledge to improve human well-being. We highlight three current opportunities in ecohydrology. The first is the need for stronger research in arid and semi-arid ecosystems, where water is scarce and a tight coupling exists between hydrology and ecology. The second is to build better predictive frameworks for understanding the consequences of vegetation change. The new framework we propose here combines landscape connectivity, through recharge and discharge dynamics, with global climate. In systems where annual precipitation and evapotranspiration are similar, the...
Categories: Publication;
Types: Citation,
Journal Citation;
Tags: Ecohydrology,
climate change,
crop yields,
ecohydrology,
groundwater dynamics,
![]() These data are forecast barren land change under the PCM B1 scenarios, calculated using the outputs from runs of the USFS Pacific Northwest Research Station and WWETAC MC1 Vegetation model.MC1 Vegetation Model description: This collection of layers includes summary statistics from input and output data used for simulation of vegetation response to climate change in California. The simulations were performed using MC1 dynamic global vegetation model (DGVM), source code revision 152. The model was parameterized and evaluated by the DGVM research group at the US Forest Service Pacific Northwest Research Station, with support from the Western Wildland Environmental Threat Assessment Center. The model was parameterized...
![]() These data are forecast barren land change under the GFDL A2 scenarios, calculated using the outputs from runs of the USFS Pacific Northwest Research Station and WWETAC MC1 Vegetation model.MC1 Vegetation Model description: This collection of layers includes summary statistics from input and output data used for simulation of vegetation response to climate change in California. The simulations were performed using MC1 dynamic global vegetation model (DGVM), source code revision 152. The model was parameterized and evaluated by the DGVM research group at the US Forest Service Pacific Northwest Research Station, with support from the Western Wildland Environmental Threat Assessment Center. The model was parameterized...
|
![]() |