Skip to main content
Advanced Search

Filters: Tags: time series (X)

326 results (101ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset consists of 42 magnetotelluric (MT) stations collected in 2017 in the Northwest Geysers, CA. The U.S. Geological Survey acquired these data as part of a project to image the heat source in the Northwest Geysers. Support was from the U.S. Geological Survey's Volcano Hazards Program.
thumbnail
This dataset consists of 42 magnetotelluric (MT) stations collected in 2017 in the Northwest Geysers, CA. The U.S. Geological Survey acquired these data as part of a project to image the heat source in the Northwest Geysers. Support was from the U.S. Geological Survey's Volcano Hazards Program.
thumbnail
This dataset consists of 42 magnetotelluric (MT) stations collected in 2017 in the Northwest Geysers, CA. The U.S. Geological Survey acquired these data as part of a project to image the heat source in the Northwest Geysers. Support was from the U.S. Geological Survey's Volcano Hazards Program.
thumbnail
This dataset consists of 42 magnetotelluric (MT) stations collected in 2017 in the Northwest Geysers, CA. The U.S. Geological Survey acquired these data as part of a project to image the heat source in the Northwest Geysers. Support was from the U.S. Geological Survey's Volcano Hazards Program.
thumbnail
Included here are the model, data, and reponse files used to create the 2D electrical resistivity model. Plots of the data and model response are provided as well as one of the model. The data, model, mesh, regularization, and response files are provided in Occam2D format. See https://marineemlab.ucsd.edu/Projects/Occam/2DMT/index.html for details on file format. This data product includes Occam2D data, model, response, and mesh files such that anyone can reproduce the model results. To produce the 2D model the data are rotated to principle strike direction estimated from the phase tensor azimuth, which was nominaly geomagnetic north. The station locations are projected onto a profile line N66E. Bad data points...
thumbnail
This dataset consists of 14 magnetotelluric (MT) stations collected in 2015 near San Pablo Bay, California along a east-northeast profile. The U.S. Geological Survey acquired these data to understand the fault geometry of the Hayward Fault and the Rodgers Creek Fault.
thumbnail
This dataset consists of 65 magnetotelluric (MT) stations collected in 2015 near Mountain Pass, California. The U.S. Geological Survey acquired these data to create a regional conductivity model near the Mountain Pass mine. This work is in support of characterizing mineral deposits.
thumbnail
This dataset consists of 65 magnetotelluric (MT) stations collected in 2015 near Mountain Pass, California. The U.S. Geological Survey acquired these data to create a regional conductivity model near the Mountain Pass mine. This work is in support of characterizing mineral deposits.
thumbnail
This dataset consists of 65 magnetotelluric (MT) stations collected in 2015 near Mountain Pass, California. The U.S. Geological Survey acquired these data to create a regional conductivity model near the Mountain Pass mine. This work is in support of characterizing mineral deposits.
thumbnail
This dataset consists of 65 magnetotelluric (MT) stations collected in 2015 near Mountain Pass, California. The U.S. Geological Survey acquired these data to create a regional conductivity model near the Mountain Pass mine. This work is in support of characterizing mineral deposits.
thumbnail
This dataset consists of 65 magnetotelluric (MT) stations collected in 2015 near Mountain Pass, California. The U.S. Geological Survey acquired these data to create a regional conductivity model near the Mountain Pass mine. This work is in support of characterizing mineral deposits.
thumbnail
To determine if invasive annual grasses increased around energy developments after the construction phase, we calculated an invasives index using Landsat TM and ETM+ imagery for a 34-year time period (1985-2018) and assessed trends for 1,755 wind turbines (from the U.S. Wind Turbine Database) installed between 1988 and 2013 in the southern California desert. The index uses the maximum normalized difference vegetation index (NDVI) for early season greenness (January-June), and mean NDVI (July-October) for the later dry season. We estimated the relative cover of invasive annuals each year at turbine locations and control sites and tested for changes before and after each turbine was installed. These data were used...
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
Categories: Data; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Carson National Forest, Colfax County, Colorado, Colorado Plateau, Dona Ana County, All tags...
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.
thumbnail
This dataset consists of 102 magnetotelluric (MT) stations collected in 2012-2014 in the Rio Grande Rift and southern Rocky Mountains. The U.S. Geological Survey acquired these data to improve regional conductivity models of the western United States. This work is in support of studies of the effect of lithospheric modification on electrical resistivity structure and tectonic evolution of the western United States.


map background search result map search result map Regional scale magnetotelluric data from the Rio Grande Rift and southern Rocky Mountains Station_rgr025 Station_rgr119 Station_rgr203 Station_rgr307 Station_rgr320 station mp111 station mp205 station mp313 station mp333 station mp346 station gz15 station gz24 station gz49 station gz50 Data supporting Landsat time series assessment of invasive annual grasses following energy development Magnetotelluric data from San Pablo Bay, California: station sp03 Two-dimensional Electrical Resistivity Model from San Pablo Bay, California Data supporting Landsat time series assessment of invasive annual grasses following energy development Regional scale magnetotelluric data from the Rio Grande Rift and southern Rocky Mountains