Skip to main content
Advanced Search

Filters: Tags: tides (X)

202 results (55ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Potential tsunami hazards for the Fox Islands communities of Unalaska/Dutch Harbor and Akutan were evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources and taking into account historical observations. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Aleutian megathrust. The worst-case scenarios for Unalaska and Akutan are thought to be thrust earthquakes in the Fox Islands region with magnitudes ranging from Mw 8.8 to Mw 9.1 that have their greatest slip at 30-40 km (18-25 mi) depth. We also consider Tohoku-type ruptures and an outer-rise...
thumbnail
The purpose of this study is to evaluate tsunami hazard for the community of Seward and northern Resurrection Bay area, Alaska. This report will provide guidance to local emergency managers in tsunami hazard assessment. We used a numerical modeling method to estimate the extent of inundation by tsunami waves generated from earthquake and landslide sources. Our tsunami scenarios included a repeat of the tsunami of the 1964 Great Alaska Earthquake, as well as tsunami waves generated by two hypothetical Yakataga Gap earthquakes in northeastern Gulf of Alaska, hypothetical earthquakes in Prince William Sound and Kodiak asperities of the 1964 rupture, and local underwater landslides in Resurrection Bay. Results of numerical...
thumbnail
Time series data of water surface elevation and wave height were acquired at ten locations for 517 days (in three separate deployments) off the north coast of Roi-Namur Island, Kwajalein Atoll, Marshall Islands, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs.
thumbnail
Understanding the causes of relative sea level rise requires knowledge of changes to both land (uplift and subsidence) and sea level. However, measurements of coastal uplift or subsidence are almost completely lacking in western Alaska. This project provided precise measurements of prioritized benchmarks across the Western Alaska geography, improving the network of published tidal benchmark elevations, allowing for tidal datum conversion in more places, and providing a necessary component for improved inundation studies in coastal communities and low-lying areas. The project’s map of vertical velocities (uplift/subsidence) of western Alaska (see ‘Final Project Report’ & ‘Vertical Velocity Map’, below) will be combined...
Understanding the causes of relative sea level rise requires knowledge of changes to both land (uplift and subsidence) and sea level. However, measurements of coastal uplift or subsidence are almost completely lacking in western Alaska. This project provided precise measurements of prioritized benchmarks across the Western Alaska geography, improving the network of published tidal benchmark elevations, allowing for tidal datum conversion in more places, and providing a necessary component for improved inundation studies in coastal communities and low-lying areas. The project’s map of vertical velocities (uplift/subsidence) of western Alaska (see ‘Final Project Report’ & ‘Vertical Velocity Map’, below) will be combined...
The western coastline of Alaska spans over 10,000 km of diverse topography ranging from low lying tundra in the north to sharp volcanic relief in the south. Included in this range are areas highly susceptible to powerful storms which can cause coastal flooding, erosion and have many other negative effects on the environment and commercial efforts in the region. In order to better understand the multi-scale and interactive physics of the deep ocean,continental shelf, near shore, and coast, a large unstructured domain hydrodynamic model is being developed using the finite element, free surface circulation code ADCIRC.This model is a high resolution, accurate, and robust computational model of Alaska’s coastal environment...
thumbnail
The goal of this project is to provide a preliminary overview, at a National scale, the relative susceptibility of the Nation's coast to sea- level rise through the use of a coastal vulnerability index (CVI). This initial classification is based upon the variables geomorphology, regional coastal slope, tide range, wave height, relative sea-level rise and shoreline erosion and accretion rates. The combination of these variables and the association of these variables to each other furnish a broad overview of regions where physical changes are likely to occur due to sea-level rise.


map background search result map search result map Wave Height Data for the Gulf of Mexico Tsunami inundation maps of Seward and northern Resurrection Bay, Alaska Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska Roi-Namur Island, Marshall Islands, wave and water level data, 2013-2015 Roi-Namur Island, Marshall Islands, wave and water level data, 2013-2015 Tsunami inundation maps of Seward and northern Resurrection Bay, Alaska Wave Height Data for the Gulf of Mexico