Skip to main content
Advanced Search

Filters: Tags: suspended sediment (X)

87 results (86ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Description of Work Since 2010, connecting channels have been included in each of the Great Lakes’ Lake Management Plans (LaMPs). Lake Ontario now includes both the Niagara River and the St. Lawrence River. The Niagara River is well characterized by a number of long-term programs, but because of the lack of tributary water-quality data, the St. Lawrence River and its tributaries constitute a data gap in the information needed for the Lake Ontario to fulfill its goals. Critical information needs, including basic water-quality parameters, total suspended solids, nutrients and flow data. These data are needed to aid in the identification of sources of nutrient and sediment loading to the St. Lawrence. The monitoring...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). A recently published extension of WRTDS allows users to separate these estimates according to high- and low-flow conditions. High- and low-flow conditions can be selected by the user and correspond with the percentile of mean daily flow values used in the analysis. The default setting...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
This data release supports the following publication: Hittle, Elizabeth, 2017, Longshore water-current velocity and the potential for transport of contaminants: A pilot study in Lake Erie from Walnut Creek to Presque Isle State Park Beaches, Erie, Pennsylvania, June and August 2015: U.S. Geological Survey Open-File Report 2016–1206 126 p., https://doi.org/10.3133/ofr20161206 Water-quality grab samples were collected about a meter from shore and coincide with the 25 longshore water-current velocity transects as closely as conditions would allow. Nearshore water-quality grab samples were collected on June 24, August 11, and August 19, 2015. Samples were analyzed for bacteria concentration, temperature, specific condictivity,...
thumbnail
Field measurements of various optical properties of the water column were acquired from a single location on the Kootenai River in northern Idaho, September 26-27, 2017, to support research on remote sensing of rivers, particularly estimation of water depth from passive optical image data. The field measurements included in this data release include several parameters measured with three different instruments. A WetLabs EcoTriplet multi-probe was used to measure the volume scattering coefficient (Beta) at 700 nm, the back-scattering coefficient (b_b) at 700 nm, chlorophyll concentration, colored dissolved organic matter (CDOM) concentration, and turbidity. A Sequoia Scientific LISST-100X was used to measure the...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the nine Chesapeake Bay River Input Monitoring (RIM) stations for the period 1985 through 2015. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (represents the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective watershed...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects...
thumbnail
Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (represents the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective watershed area (acres)...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
In the fall of 2014 (October-November) the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers collected sediment samples (suspended and bed material) at several sites on the Niobrara River in Nebraska near the Spencer Dam prior to, during, and immediately after a sediment-flushing event. Suspended-sediment samples were analyzed for sediment concentration and percent finer than sand. Bed sediment samples were analyzed for particle-size distribution using standard classes by sieve analysis. In addition, a Sequoia LISST Streamside particle-size analyzer (PSA) was deployed during the first week of the flush; this unit collected suspended-sediment concentration and grain-size data. Sampled sites...
Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected...
In settings where the transport of sand is partially or fully supply limited, changes in the upstream supply of sand are coupled to changes in the grain size of sand on the bed. In this manner, the transport of sand under the supply-limited case is ‘grain-size regulated’. Since the closure of Glen Canyon Dam in 1963, the downstream reach of the Colorado River in Marble and Grand Canyons has exhibited evidence of sand-supply limitation. Sand transport in the river is now approximately equally regulated by changes in the discharge of water and changes in the grain sizes of sand on the channel bed and eddy sandbars. Previous work has shown that changes in the grain size of sand on the bed of the channel (driven by...
thumbnail
This is a multi-disciplinary community of scientists who study the effects of wildfire disturbance on the built and natural environment. The mission is to understand natural processes such as infiltration, rainfall-runoff, erosion, sediment and chemical transport, and water quality effects. The focus is on obtaining field-based measurements that can be used to improve or develop models for use by emergency, land and water supply managers as tools for decision making.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river...


map background search result map search result map Aqueous Phases of Bifenthrin in Mesocosms Characteristics of Spikes Delivered to Mesocosms Nearshore Water Quality Collected on Lake Erie on June 24, 2015, August 11, 2015, and August 19, 2015 Chesapeake Bay Nontidal Network 2005-2014: Average Yields Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Niobrara River suspended-sediment and bed-sediment data collected during hydroelectric dam flush near Spencer, Nebr., October through November, 2014 Chesapeake Bay River Input Monitoring Network 1985-2017: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2017: Short- and long-term trends Field measurements of water column optical properties from the Kootenai River in northern Idaho, September 26-27, 2017, and similar data from several other rivers Chesapeake Bay River Input Monitoring Network 1985-2018: WRTDS input data Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay Nontidal Network 1985-2018: Average annual yields Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2019 Chesapeake Bay River Input Monitoring Network 1985-2019: WRTDS output data Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates Nearshore Water Quality Collected on Lake Erie on June 24, 2015, August 11, 2015, and August 19, 2015 Niobrara River suspended-sediment and bed-sediment data collected during hydroelectric dam flush near Spencer, Nebr., October through November, 2014 Chesapeake Bay Nontidal Network 2005-2014: Average Yields Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Chesapeake Bay River Input Monitoring Network 1985-2017: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2017: Short- and long-term trends Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay River Input Monitoring Network 1985-2019: WRTDS output data Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates Chesapeake Bay River Input Monitoring Network 1985-2018: WRTDS input data Chesapeake Bay Nontidal Network 1985-2018: Average annual yields Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2019 Aqueous Phases of Bifenthrin in Mesocosms Characteristics of Spikes Delivered to Mesocosms