Skip to main content
Advanced Search

Filters: Tags: statistical downscaling (X) > partyWithName: Henry F. Diaz (X) > partyWithName: Thomas W. Giambelluca (X)

3 results (41ms)   

View Results as: JSON ATOM CSV
thumbnail
In the expectation that global climate will change steadily in the coming decades, this research project had the goal to obtain a more detailed view of the climatic changes that Hawai’i could experience by the mid and late 21st century. Given the importance of rainfall for Hawaiian ecosystems and freshwater reserves, this project investigated past seasonal rainfall pattern and developed a statistical model to estimate future rainfall changes for the major islands. As a result of this research, high-resolution maps and data are now available that researchers can use to study potential impacts on endangered species, or use the rainfall changes as input in decision-support tools.This data product provides data files...
Abstract: The aim of this paper is to present a statistical downscaling method in which the relationships between present-day daily weather patterns and local rainfall data are derived and used to project future shifts in the frequency of heavy rainfall events under changing global climate conditions. National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from wet season months (November to April) 1958–2010 are composited for heavy rain days at 12 rainfall stations in the Hawaiian Islands. The occurrence of heavy rain events (days with amounts above the 90th percentile estimated from all wet season rain days 1958–2010) was found to be strongly correlated...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2014JD022059/abstract): Seasonal mean rainfall projections for Hawai‘i are given based on statistical downscaling of the latest Coupled Model Intercomparison Project phase 5 (CMIP5) global model results for two future representative concentration pathways (RCP4.5 and RCP8.5). The spatial information content of our statistical downscaling method is improved over previous efforts through the inclusion of spatially extensive, high-quality monthly rainfall data set and the use of improved large-scale climate predictor information. Predictor variables include moisture transport in the middle atmosphere (700 hPa), vertical temperature gradients, and geopotential...


    map background search result map search result map Datasets for "Climate Change Research in Support of Hawaiian Ecosystem Management: An Integrated Approach" Datasets for "Climate Change Research in Support of Hawaiian Ecosystem Management: An Integrated Approach"