Filters: Tags: specific conductance (X)
147 results (71ms)
Filters
Date Range
Extensions Types Contacts
Categories Tag Types
|
A vented conductivity, temperature and depth sensor (CTD, InSitu Aqua Troll) was installed at site NR1 (N 47° 04’ 16.1”/W 122° 42’ 15.5”) and continuously measured water temperature, water depth, specific conductance, and salinity at 15-minute intervals from February 11, 2016 to July 18, 2016 (159 days). The sensor was replaced with a vented water-level logger (InSitu Level Troll) on July 19, 2016 and deployed until March 19, 2018 (608 days). The site is tidally influenced and located approximately 4.1 km upstream from the mouth of the Nisqually River and within the tidal prism. The elevation (NAVD88) of the top of the deployment pipe was surveyed by RTN-GPS. Tape-down measurements from the top of the pipe to the...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service,
Shapefile;
Tags: Billy Frank Jr. Nisqually National Wildlife Refuge,
Hydrodynamics,
Sediment,
Thurston County,
salinity,
The file "Chloride_specific_conductance_regression_model_forms_for_estimating_high-frequency_chloride_concentrations.csv" contains the regression equation forms for two types of regressions: 1) single linear (SLR) and 2) piecewise (or segmented; SEG) regression between specific conductance (SC) and chloride (Cl) concentrations for 56 USGS water-quality monitoring stations across the eastern United States, plus four regional regressions developed by pooling data for sites within a region (see Moore and others (in review) for more information). Some sites, and all regions, have both SLR and SEG models reported in this table. The analysis included in the Moore and others (in review) study used results from the SLR...
Water velocities and water-quality constituents were measured along planned survey lines, which were generally perpendicular to the shoreline and spaced 100 meters apart, over an approximately 2.3-mile section of nearshore Lake Erie on June 10-12, 2019 (survey 1), and August 19-21, 2019 (survey 2), using a 1200 kHz acoustic Doppler current profiler (ADCP), a YSI 6920 V2 multiparameter sonde, and a YSI EcoMapper autonomous underwater vehicle (AUV). Water-quality data collected in this area included near-surface and three-dimensional measurements of water temperature, specific conductance, pH, dissolved oxygen, turbidity, chlorophyll, and phycocyanin (blue-green algae). The data were geo-referenced with an integrated...
Categories: Data;
Tags: Cleveland,
Easterly Wastewater Treatment Plant (WWTP),
EcoMapper,
Euclid Creek,
Lake Erie,
The datasets provided here are the input data used to run the Seasonal Kendall Trend (SKT) tests and Weighted Regressions on Time, Discharge, and Season (WRTDS) models. SKT tests use "annualSamplingFreqs_allSites.csv" and "wqData_screenedSitesAll.csv" which includes, for all site-parameter combinations, information on annual sampling frequencies and the screened water-quality data, respectively. The WRTDS models use "DRB.wqdata.20200521.csv", "DRB.flow.20200610.zip", and "DRB.info.20200521.csv" for calibration which includes, for all site-parameter combinations, the water-quality data, streamflow data (as separate .csv files for each site), model specifications and site information, respectively. The multisource...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Ammonia,
Calcium,
Chloride,
Delaware,
Delaware River,
This U.S. Geological Survey (USGS) Data Release provides spatial water-quality data collected from Milford Lake, Kansas, on May 26, June 9, July 14, July 21, and September 15, 2016. All data are reported as raw measured values and are not rounded to USGS significant figures. Continuous water-quality monitors were used to measure water temperature, specific conductance, turbidity, pH, chlorophyll, phycocyanin, dissolved oxygen, and fluorescent dissolved organic matter (fDOM) at thirty-second intervals at depths of 0.5- and 1.5-meters throughout the lake.
Categories: Data;
Tags: Chlorophyll,
Continuously Measured,
Dissolved Oxygen,
Field Deployment,
Fluorescent Dissolved Organic Matter (fDOM),
From August 2018 to October 2019, the U.S. Geological Survey collected spatially high-resolution water quality data as part of five shoreline synoptic surveys around the perimeters of Owasco, Seneca, and Skaneateles Lakes within the Finger Lakes Region of New York. Water-quality data were collected just below water surface utilizing YSI EXO2 multiparameter sondes and portable nitrate sensors paired with real-time GPS data as part of a HABs monitoring program in the Finger Lakes. In October 2019, water-quality data collection was paired with discrete phytoplankton grab samples on Owasco Lake and Seneca Lake. Phytoplankton grab samples were collected just below water surface with a peristaltic pump at twelve locations...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Aquatic Biology,
Contaminants, HABS,
Finger Lakes,
Limnology,
New York,
This child item data set provides high-resolution, nearshore, spatial water-quality data collected from Owasco Lake, New York, on June 26 and October 8, 2019. All data are reported as raw measured values. Continuous water-quality monitors were mounted to a boat at approximately 0.5-meters below the water surface and used to measure nitrate, chlorophyll fluorescence (fChl), fluorescent dissolved organic matter (fDOM), dissolved oxygen, specific conductance, phycocyanin fluorescence (fPC), turbidity, pH, and temperature.
Categories: Data;
Tags: Contaminants, HABS,
Finger Lakes,
New York,
Owasco Lake,
Surface-Water Quality Monitoring,
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Uintah County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Daggett County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
A vented conductivity, temperature and depth sensor (CTD, InSitu Aqua Troll) was installed at site NR3 (N 47° 05’ 12”/W 122° 42’ 22”) and continuously measured water level, water temperature, specific conductance, and salinity at 15-minute intervals from February 12, 2016 to August 7, 2016 (177 days) and from October 7, 2016 to February 8, 2017 (124 days). This site is tidally influenced and located approximately 2.2 km upstream from the mouth of the Nisqually River. Elevation (NAVD88) of the deployment pipe was surveyed by RTN-GPS. Elevation of pipe plus distance to sensor is included in the offset. The offset needed to convert water depth to NAVD88 water surface elevation is -0.31 meters. . Water depth of the...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Billy Frank Jr. Nisqually National Wildlife Refuge,
Hydrodynamics,
Sediment,
Thurston County,
salinity,
This data set includes estimated chloride concentrations for the 93 USGS water quality monitoring stations located across the eastern United States. Chloride concentrations were predicted using regression equations that established the relationship between simultaneous measurements of chloride and specific conductance (SC). Site-specific models were developed and applied when data were available, and regional regression models were used where there were insufficient data available to establish a site-specific regression model. These models were applied to high-frequency SC data sets to produce high-frequency predicted chloride concentrations at 2-minute to 1-hour intervals, depending on the frequency at which SC...
This product consists of one tabular dataset and associated metadata of water quality information related to rivers, streams, and reservoirs in the Upper Mississippi River watershed between 2012 and 2016. This data release is a part of a national assessment of freshwater aquatic carbon fluxes. Data consist of organic and inorganic carbon related species, carbon dioxide and methane gas fluxes calculated from manual chamber measurements, nitrogen species, carbon isotopes, oxygen isotopes, cations, anions, trace metals, and various in situ measurements including: pH, water temperature, air temperature, barometric pressure, dissolved oxygen, turbidity, fluorescent dissolved organic matter, and specific conductance....
Categories: Data,
Project;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Carbon,
Fluorescent Dissolved Organic Matter (fDOM),
Minnesota,
Shingobee,
Shingobee Headwaters Aquatic Ecosystems Project,
Sample and Specific Conductance Monitoring Site Near the USGS stream gage 06191500 (Latitude N 45°06'43.63", Longitude W 110°47'37.20", NAD83). Methods Specific Conductance Data An In-Situ Aqua Troll 100 Data Logger was used to measure and store specific conductance measurements. Specific conductance measurements were made every 15 minutes. The specific conductance monitoring data were periodically checked against discrete measurements. The hand-held field meter used for discrete measurements and the continuous specific conductance probe were calibrated using NIST traceable standards and measurements were made following the procedure described in the USGS National Field Manual (USGS, 2015). Water Quality Data...
The U.S. Geological Survey (USGS) and the National Park Service (NPS) have collaborated on monitoring the chloride flux in the major rivers of Yellowstone National Park by periodically sampling the rivers and analyzing chloride concentrations in discrete water samples since the 1970's. However, restrictions of winter travel, great distances between sites, and sampling and analytical costs have limited collection to approximately 28 samples per site annually. Electrical conductivity data can be used as a proxy for chloride concentrations in many of the major rivers of Yellowstone National Park. Electrical conductivity is a measure of the ability of water to pass an electrical current, and it is affected by the presence...
Categories: Data;
Types: Citation,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: USGS Science Data Catalog (SDC),
Water Resources,
Yellowstone National Park,
electrical conductivity,
specific conductance
Sample and Specific Conductance Monitoring Site Near the USGS stream gage 06036940 (Latitude N 44°43'57.81", Longitude W 110°42'47.71", NAD83). Methods Specific Conductance Data An In-Situ Aqua Troll 100 Data Logger was used to measure and store specific conductance measurements. Specific conductance measurements were made every 15 minutes. The specific conductance monitoring data were periodically checked against discrete measurements. The hand-held field meter used for discrete measurements and the continuous specific conductance probe were calibrated using NIST traceable standards and measurements were made following the procedure described in the USGS National Field Manual (USGS, 2015). Water Quality Data...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Specific conductance,
Yellowstone National Park,
geoscientificInformation
This dataset contains climate, road salt application, physical, and land cover characteristics summarized for watersheds upstream of 93 USGS stream gages. Data were summarized by watershed using geographic information system software. The dataset consists of one comma-separated variable table.
Ecosystem metabolism is a measure of energy flow in terrestrial and aquatic environments that quantifies a balance between the rate of biomass production by photosynthesizing plants and the rate of biomass oxidation by respiring plants and animals to maintain and build living biomass. It is therefore a fundamental measure of ecosystem function that quantifies the balance between the rate of production, maintenance, and decay of organic matter. It also provides an understanding of energy flow to higher trophic levels that supports food webs with secondary and tertiary productivity. Furthermore, metabolism helps explain when aquatic ecosystems undergo out-of-balance behaviors such as hypoxia. Recent advances in sensor...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Aquatic Biology,
Environmental Health,
Hydrology,
Illinois,
Indiana,
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Tooele County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Davis County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Grand County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
|
![]() |