Skip to main content
Advanced Search

Filters: Tags: selection (X)

108 results (42ms)   

View Results as: JSON ATOM CSV
Understanding limiting factors and interspecific interactions is fundamental to wildlife management and can be inferred from multiscale patterns of resource selection. We studied winter resource selection and overlap of white-tailed deer (Odocoileus virginianus) and translocated female elk (Cervus elaphus) over 2 winters in central Ontario, Canada. Microhabitat data were collected along 4 organism-centered spatial scales: site, trail, feeding station, and diet. Although winter conditions varied between years, white-tailed deer consistently traveled and fed in habitats with greater coniferous basal area than elk. Neither species demonstrated selection for coniferous basal area or snow depth across scales. At successively...
Reciprocal selection pressures often lead to close and adaptive matching of traits in coevolved species. A failure of one species to match the evolutionary trajectories of another is often attributed to evolutionary lags or to differing selection pressures across a geographic mosaic. Here we show that mismatches in adaptation of interacting species–an obligate brood parasitic duck and each of its two main hosts–are best explained by the evolutionary dynamics within the host species. Rejection of the brood parasite's eggs was common by both hosts, despite a lack of detectable cost of parasitism to the hosts. Egg rejection markedly reduced parasite fitness, but egg mimicry experiments revealed no phenotypic natural...
We have conducted a detailed analysis of costs associated with today’s technology for CO2 separation and capture at three types of power plants: integrated coal gasification combined cycles (IGCC), pulverized coal-fired simple cycles (PC), and natural gas-fired combined cycles (NGCC). The analysis was based on studies from the literature that analyzed the economics of capturing CO2 emitted at power plants. In this paper, we present a composite cost model and perform a sensitivity analysis to identify the cost-drivers for capture. We conclude that with new developments, CO2 capture and sequestration can become a cost-effective mitigation pathway.
We have conducted a detailed analysis of costs associated with today’s technology for CO2 separation and capture at three types of power plants: integrated coal gasification combined cycles (IGCC), pulverized coal-fired simple cycles (PC), and natural gas-fired combined cycles (NGCC). The analysis was based on studies from the literature that analyzed the economics of capturing CO2 emitted at power plants. In this paper, we present a composite cost model and perform a sensitivity analysis to identify the cost-drivers for capture. We conclude that with new developments, CO2 capture and sequestration can become a cost-effective mitigation pathway.