Filters: Tags: sea-level rise (X)
210 results (11ms)
Filters
Date Range
Extensions (Less) Types (Less)
Contacts (Less)
Categories (Less) Tag Types
|
Assessing the potential vulnerability of the coastal zone to sea-level rise (SLR) requires integrating a variety of physical, biological, and social factors. These include landscape, habitat, and resource changes, as well as the ability of society and its institutions to adapt. The range of physical and biological responses associated with SLR is poorly understood at some of the critical time and space scales required for decision making. Limitations in the ability to quantitatively predict outcomes at local, regional, and national scales affect whether, when, and how some decisions will be made. The USGS and collaborators are developing scientific knowledge and tools to understand and anticipate the magnitude and...
Categories: Publication;
Types: Citation;
Tags: Northeast CASC,
SLR,
Sea-Level Rise and Coasts,
Water, Coasts and Ice,
Wetlands,
![]() This dataset is part of an extensive analysis of sea-level rise impacts on coastal habitats along the Chesapeake Bay, Delaware Bay, and the ocean beaches of southern New Jersey, Delaware, Maryland, and Virginia. The National Wildlife Federation commissioned Jonathan S. Clough of Warren Pinnacle Consulting, Inc., to apply the Sea Level Affecting Marshes Model (SLAMM, Version 5.0) to the Chesapeake Bay region. The SLAMM model is widely regarded as the premier research tool for simulating the dominant processes involved in wetland conversions and shoreline modifications during long-term sea-level rise. Our analysis looked at a range of sea-level rise scenarios from the 2001 Intergovernmental Panel on Climate Change...
Over 50% of commercial and recreationally important fish species depend on coastal wetlands. In the Pacific Northwest, coastal wetlands, where the ocean meets the land, are highly productive areas that support a wealth of wildlife species from salmon to ducks. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats and provide economic and recreational benefits to local communities. However, wetlands in this region and elsewhere are threatened by sea-level rise and other climate-related changes. According to a USFWS and NOAA report, between 2004 and 2009, 80,000 acres of wetland were lost on average each year, which is a significant increase from the previous...
Categories: Project;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: 2012,
CASC,
Climate change,
Completed,
Completed,
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Beaches,
CMHRP,
Central California,
Central California Coast,
Climate change,
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Beaches,
CMHRP,
Central California,
Central California Coast,
Climate change,
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Beaches,
CMHRP,
Central California,
Central California Coast,
Climate change,
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Beaches,
CMHRP,
Central California,
Central California Coast,
Climate change,
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Beaches,
CMHRP,
Central California,
Central California Coast,
Climate change,
To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the rapidly subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing...
Categories: Data;
Types: Citation;
Tags: Ecology,
Geomorphology,
Louisiana,
Port Fourchon,
USGS Science Data Catalog (SDC),
Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change.
Categories: Data;
Types: Citation,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Georgia,
Savannah River,
Soil organic matter,
South Carolina,
USGS Science Data Catalog (SDC),
|
![]() |