Skip to main content
Advanced Search

Filters: Tags: sea-level rise (X)

210 results (65ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
First Release: November 2018 The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge....
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This dataset is part of an extensive analysis of sea-level rise impacts on coastal habitats along the Chesapeake Bay, Delaware Bay, and the ocean beaches of southern New Jersey, Delaware, Maryland, and Virginia. The National Wildlife Federation commissioned Jonathan S. Clough of Warren Pinnacle Consulting, Inc., to apply the Sea Level Affecting Marshes Model (SLAMM, Version 5.0) to the Chesapeake Bay region. The SLAMM model is widely regarded as the premier research tool for simulating the dominant processes involved in wetland conversions and shoreline modifications during long-term sea-level rise. Our analysis looked at a range of sea-level rise scenarios from the 2001 Intergovernmental Panel on Climate Change...
thumbnail
This dataset is part of an extensive analysis of sea-level rise impacts on coastal habitats along the Chesapeake Bay, Delaware Bay, and the ocean beaches of southern New Jersey, Delaware, Maryland, and Virginia. The National Wildlife Federation commissioned Jonathan S. Clough of Warren Pinnacle Consulting, Inc., to apply the Sea Level Affecting Marshes Model (SLAMM, Version 5.0) to the Chesapeake Bay region. The SLAMM model is widely regarded as the premier research tool for simulating the dominant processes involved in wetland conversions and shoreline modifications during long-term sea-level rise. Our analysis looked at a range of sea-level rise scenarios from the 2001 Intergovernmental Panel on Climate Change...
thumbnail
The goal of this project is to provide a preliminary overview, at a National scale, the relative susceptibility of the Nation's coast to sea- level rise through the use of a coastal vulnerability index (CVI). This initial classification is based upon the variables geomorphology, regional coastal slope, tide range, wave height, relative sea-level rise and shoreline erosion and accretion rates. The combination of these variables and the association of these variables to each other furnish a broad overview of regions where physical changes are likely to occur due to sea-level rise. Digital Data Series - 68
This report summarizes the results of a three-year investigation of terrestrial habitat connectivity priorities for the South Atlantic Landscape Conservation Cooperative (South Atlantic LCC). Our primary objective was to generate results that could be used to drive fineā€scaled conservation planning to enhance habitat connectivity across the South Atlantic LCC. The project focused on seven target species, including large mammals (black bear, red wolf, Florida panther/eastern cougar) and a group of terrestrial reptiles (eastern diamondback rattlesnake, timber rattlesnake, pine snake, and box turtle). We used two different modeling approaches to identify areas with either high predicted flow of a given species (Circuitscape)...
The Hawaiian Islands' largest atoll, French Frigate Shoals, is key to understanding how seabird nesting habitat will change with predicted rising sea levels.
thumbnail
The research was conducted at eight tidal marshes in coastal estuaries spanning the Washington and Oregon coastlines from Padilla Bay in northern Washington to Bandon located at the mouth of the Coquille River in southern Oregon. The researchers performed bathymetric surveys, created digital elevation models, measured historic rates of mineral and organic matter accumulation, conducted vegetation surveys, deployed water level data loggers, and produced WARMER wetland accretion model projections for each study site. This collection contains data for all of the above across a number of different datasets. Users should investigate the metadata for each item for more information about it's purpose, methods, quality,...
In December 2009, a workshop sponsored by the US Geological Survey and the US Environmental Protection Agency was held to identify on-going sea level rise (SLR) modeling efforts, data gaps, and information needs for management decisions about current and future mitigation and restoration efforts in Oregon estuaries. The workshop brought together 46 non-governmental organizations, federal scientists, state land managers, and SLR modelers and has inspired collaborations for data, knowledge, and technology exchange. A second SLR workshop was scheduled for February 1 and 2, 2011 in Newport, OR to continue to build upon the collaborative efforts established at the first workshop.
thumbnail
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
thumbnail
This report examines the current state of practice for identifying and prioritizing wetlands for their usefulness in climate risk reduction and climate resilience. It is intended to identify promising paths to advance current practice and to improve implementation of strategies across the coastal states of the Mid-Atlantic Region in order to achieve regional protection of human communities and maintenance of ecological functions over the coming century of climate change impacts.
thumbnail
The Intergovernmental Panel on Climate Change reports that low-lying atolls (ring-shaped islands or island chains made of coral) in the Pacific Ocean are extremely vulnerable to high tide events (“king tides”), storm surge, tsunamis, and sea-level rise. The Republic of the Marshall Islands (RMI) spreads over 29 atolls and has a population of over 50,000 people with homes and communities that may be threatened by these climate change-related events. Policy makers, planners, and others within RMI are faced with decisions about how to prepare for the future and need scientific data and information about the vulnerability of Pacific Islands to potential climate change impacts like sea-level rise. Topographic and bathymetric...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...


map background search result map search result map Coastal Vulnerability Chesapeake Bay region sea-level rise modelling - Habitat classification, 2050 (A1B mean scenario) Chesapeake Bay region sea-level rise modelling - Habitat classification, 2025 (B1 mean scenario) Data_Series_969_Tidal_Saline_Wetland_Migration_2030 Collecting Elevation Data to Understand Climate Change Effects in the Marshall Islands Environmental data Developing Wetland Restoration Priorities for Climate Risk Reduction and Resilience in the MARCO Region Field and model data for studying the effects of sea-level rise on eight tidal marshes in coastal Washington and Oregon Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 CoSMoS v3.1 wave-hazard projections: average conditions in Santa Barbara County CoSMoS v3.1 water level projections: average conditions in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 100-year storm in San Mateo County CoSMoS v3.1 ocean-currents hazards: 20-year storm in San Mateo County CoSMoS v3.1 flood depth and duration projections: 100-year storm in Santa Cruz County CoSMoS v3.1 water level projections: 20-year storm in Santa Cruz County CoSMoS v3.1 ocean-currents hazards: average conditions in Santa Cruz County CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County Collecting Elevation Data to Understand Climate Change Effects in the Marshall Islands CoSMoS v3.1 flood depth and duration projections: 100-year storm in Santa Cruz County CoSMoS v3.1 water level projections: 20-year storm in Santa Cruz County CoSMoS v3.1 ocean-currents hazards: average conditions in Santa Cruz County CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County Environmental data Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 Chesapeake Bay region sea-level rise modelling - Habitat classification, 2050 (A1B mean scenario) Chesapeake Bay region sea-level rise modelling - Habitat classification, 2025 (B1 mean scenario) Field and model data for studying the effects of sea-level rise on eight tidal marshes in coastal Washington and Oregon Developing Wetland Restoration Priorities for Climate Risk Reduction and Resilience in the MARCO Region Data_Series_969_Tidal_Saline_Wetland_Migration_2030 Coastal Vulnerability