Skip to main content
Advanced Search

Filters: Tags: sea-level rise (X) > Types: OGC WMS Service (X)

159 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
National Wildlife Refuges (NWRs) along the East Coast of the United States protect habitat for a host of wildlife species, while also offering storm surge protection, improving water quality, supporting nurseries for commercially important fish and shellfish, and providing recreation opportunities for coastal communities. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent extreme events related to climate change. These influences threaten the ability of NWRs to protect our nation’s natural resources and to sustain their many beneficial services. Through this project, researchers are collaborating with...
thumbnail
The beaches of the Hawaiian Islands attract nearly 9 million visitors each year, who inject around $15.6 billion into the state’s economy and support almost 200,000 jobs. Beyond their economic importance, Hawaiian beaches are also culturally and ecologically valuable. However, climate change driven sea-level rise is causing many beaches to disappear, endangering property, infrastructure, and critical habitats. The goal of this project was to develop a method for forecasting erosion-vulnerable beach areas that could be used in coastal management planning. Researchers focused on the island of Kauaʻi, modeling beach response to rising sea level over the next century and producing maps that provide information about...
thumbnail
The Humboldt Bay-Eel River region may experience the highest rate of relative sea level rise increase along the West Coast. The Project will engage stakeholders to discuss community and science needs for planning and implementing adaptation measures to sea level rise. The Project is a critical step in developing an ecosystem based-management (EBM) approach to guide the protection, management, enhancement, adaptation, restoration, and possible redistribution of Humboldt Bay-Eel River Delta habitats under future climate scenarios. This process will be informed by the best-available science, the needs of Humboldt Bay-Eel River Delta agricultural producers, and other community members.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2015, Academics & scientific researchers, Academics & scientific researchers, CA-02, CA-2, All tags...
thumbnail
This project obtained information regarding past catastrophic events, such as tsunamis, and TEK through oral history interviews with Tolowa elders regarding the effects of climate change and tsunamis on traditional smelt fishing camps; generated a GIS model of coastal inundation due to sea level rise and overlaid that with known archaeological and ethnographic resources; generated a final report with detailed information of past tsunami events, and modeled the potential effects of climate change and sea level rise on archaeological and ethnographic Tolowa sites using TEK and GIS based upon the results of this study.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, CA-2, CA-2, California, California, All tags...
thumbnail
This report examines the current state of practice for identifying and prioritizing wetlands for their usefulness in climate risk reduction and climate resilience. It is intended to identify promising paths to advance current practice and to improve implementation of strategies across the coastal states of the Mid-Atlantic Region in order to achieve regional protection of human communities and maintenance of ecological functions over the coming century of climate change impacts.
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This dataset contains projections for Monterey County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods and...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...


map background search result map search result map A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi Using TEK to model the effects of climate change and sea-level rise on coastal cultural resources at Tolowa Dunes State Park, Del Norte County, California Climate Change Adaptation for Coastal National Wildlife Refuges Developing Shared Strategies for Sea-level Rise Adaptation in Working Lands of Humboldt Bay and the Eel River Delta Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Developing Wetland Restoration Priorities for Climate Risk Reduction and Resilience in the MARCO Region CoSMoS v3.1 water level projections: 1-year storm in San Luis Obispo County CoSMoS v3.1 wave-hazard projections: average conditions in Santa Barbara County CoSMoS v3.1 water level projections: average conditions in Santa Barbara County CoSMoS v3.1 flood depth and duration projections: 20-year storm in San Luis Obispo County CoSMoS v3.1 wave-hazard projections: 100-year storm in San Mateo County CoSMoS v3.1 ocean-currents hazards: 20-year storm in San Mateo County CoSMoS v3.1 water level projections: 1-year storm in Santa Cruz County CoSMoS v3.1 water level projections: 20-year storm in Santa Cruz County CoSMoS v3.1 - Monterey County CoSMoS v3.1 flood depth and duration projections: 1-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 20-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 100-year storm in Monterey County CoSMoS v3.1 flood depth and duration projections: 100-year storm in Monterey County Developing Shared Strategies for Sea-level Rise Adaptation in Working Lands of Humboldt Bay and the Eel River Delta CoSMoS v3.1 wave-hazard projections: 100-year storm in San Mateo County CoSMoS v3.1 ocean-currents hazards: 20-year storm in San Mateo County CoSMoS v3.1 wave-hazard projections: average conditions in Santa Barbara County CoSMoS v3.1 water level projections: average conditions in Santa Barbara County Forecasting Beach Loss from Sea-Level Rise on the Island of Kauaʻi CoSMoS v3.1 water level projections: 1-year storm in Santa Cruz County CoSMoS v3.1 water level projections: 20-year storm in Santa Cruz County Climate Change Adaptation for Coastal National Wildlife Refuges Using TEK to model the effects of climate change and sea-level rise on coastal cultural resources at Tolowa Dunes State Park, Del Norte County, California CoSMoS v3.1 water level projections: 1-year storm in San Luis Obispo County CoSMoS v3.1 flood depth and duration projections: 20-year storm in San Luis Obispo County CoSMoS v3.1 - Monterey County CoSMoS v3.1 flood depth and duration projections: 1-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 20-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 100-year storm in Monterey County CoSMoS v3.1 flood depth and duration projections: 100-year storm in Monterey County Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Developing Wetland Restoration Priorities for Climate Risk Reduction and Resilience in the MARCO Region A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models