Skip to main content
Advanced Search

Filters: Tags: sea-level rise (X) > Types: Citation (X)

20 results (62ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The Northern Gulf of Mexico Sentinel Site Cooperative and the Southeast Climate Science Center developed a new resource - Keeping Pace: A short guide to navigating sea-level rise models! This quick four pager covers the importance of model selection, helpful concepts, model categories, and an example of how to utilize these models to address coastal issues. This resource was largely informed by the Sea-Level Rise Modeling Handbook: Resource Guide for Coastal Land Managers, Engineers, and Scientists, which resulted from a Southeast CSC funded project.
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
In December 2009, a workshop sponsored by the US Geological Survey and the US Environmental Protection Agency was held to identify on-going sea level rise (SLR) modeling efforts, data gaps, and information needs for management decisions about current and future mitigation and restoration efforts in Oregon estuaries. The workshop brought together 46 non-governmental organizations, federal scientists, state land managers, and SLR modelers and has inspired collaborations for data, knowledge, and technology exchange. A second SLR workshop was scheduled for February 1 and 2, 2011 in Newport, OR to continue to build upon the collaborative efforts established at the first workshop.
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/j.1523-1739.2012.01853.x/abstract): Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate...
Abstarct(from Ecological Society of America (ESA): Climate change and urban growth impact habitats, species, and ecosystem services. To buffer against global change, an established adaptation strategy is designing protected areas to increase representation and complementarity of biodiversity features. Uncertainty regarding the scale and magnitude of landscape change complicates reserve planning and exposes decision makers to risk of failing to meet conservation goals. Conservation planning tends to treat risk as an absolute measure, ignoring the context of the management problem and risk preferences of stakeholders. Application to conservation of risk management theory emphasizes diversification of portfolio of...
Abstract: Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong site fidelity; therefore, conservation strategies could benefit from an understanding of the population dynamics and vulnerability of breeding colonies to climate change. More than 350 atolls exist across the Pacific Ocean; while they provide nesting habitat for many seabirds, they are also vulnerable to sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore seabird colony dynamics and the potential consequences of sea-level rise. We compiled a unique combination of data sets: historical observations of islands...
Abstract (From http://www.ecologyandsociety.org/vol20/iss4/art14/): National Wildlife Refuges (NWRs) in the United States play an important role in the adaptation of social-ecological systems to climate change, land-use change, and other global-change processes. Coastal refuges are already experiencing threats from sea-level rise and other change processes that are largely beyond their ability to influence, while at the same time facing tighter budgets and reduced staff. We engaged in workshops with NWR managers along the U.S. Atlantic coast to understand the problems they face from global-change processes and began a multidisciplinary collaboration to use decision science to help address them. We are applying a...
The understanding of sea-level rise (SLR) processes has improved significantly over the past 15-20 years. Contributions from ice sheets and ocean dynamics are increasingly well-understood, and global budgets better constrained. In addition to physically-based models, semi-empirical methods, and more recently expert elicitations, are also available to describe potential SLR. In spite of these advances, there is still large uncertainty in the magnitude and timing of SLR over the next century and beyond. How much and how fast sea-level may rise can be a significant determinant of management actions in both natural and built environments. Assessing the potential vulnerability of the coastal zone to SLR requires integrating...
Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal...
thumbnail
It contains supporting data from the wetland morphology modeling to support the analysis on the landscape effects of Mississippi River diversions in the context of sea-level rise on soil organic carbon (SOC) sequestration along coastal Louisiana wetlands.
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
Assessing the potential vulnerability of the coastal zone to sea-level rise (SLR) requires integrating a variety of physical, biological, and social factors. These include landscape, habitat, and resource changes, as well as the ability of society and its institutions to adapt. The range of physical and biological responses associated with SLR is poorly understood at some of the critical time and space scales required for decision making. Limitations in the ability to quantitatively predict outcomes at local, regional, and national scales affect whether, when, and how some decisions will be made. The USGS and collaborators are developing scientific knowledge and tools to understand and anticipate the magnitude and...
thumbnail
To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the rapidly subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing...
thumbnail
Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change.


    map background search result map search result map Organic matter decomposition across a coastal wetland landscape in Louisiana, U.S.A. (2014-2015) Above and belowground decomposition Litter quality Environmental data Organic matter decomposition along coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in Southeastern U.S.A. (2010-2011) Primary production across a coastal wetland landscape in Louisiana, U.S.A. (2012-2014) Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Predicting landscape effects of Mississippi River diversions on soil organic carbon sequestration Will fluctuations in salt marsh - mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Will fluctuations in salt marsh - mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Primary production across a coastal wetland landscape in Louisiana, U.S.A. (2012-2014) Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Organic matter decomposition across a coastal wetland landscape in Louisiana, U.S.A. (2014-2015) Above and belowground decomposition Litter quality Environmental data Organic matter decomposition along coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in Southeastern U.S.A. (2010-2011) Predicting landscape effects of Mississippi River diversions on soil organic carbon sequestration