Skip to main content
Advanced Search

Filters: Tags: sagebrush (X)

508 results (6ms)   

View Results as: JSON ATOM CSV
thumbnail
Covering 120 million acres across 14 western states and 3 Canadian provinces, sagebrush provides critical habitat for species such as pronghorn, mule deer, and sage-grouse – a species of conservation concern. The future of these and other species is closely tied to the future of sagebrush. Yet this important ecosystem has already been affected by fire, invasive species, land use conversion, and now, climate change. In the western U.S., temperatures are rising and precipitation patterns are changing. However, there is currently a limited ability to anticipate the impacts of climate change on sagebrush. Current methods suffer from a range of weakness that limits the reliability of results. In fact, the current uncertainty...
thumbnail
These datasets provide early estimates of 2024 fractional cover for exotic annual grass (EAG) species and one native perennial grass species on a weekly basis from April to late June. Typically, the EAG estimates are publicly released within 7-13 days of the latest satellite observation used for that version. Each weekly release contains five fractional cover maps along with their corresponding confidence maps for: 1) a group of 16 species of EAGs, 2) cheatgrass (Bromus tectorum); 3) Field Brome (Bromus arvensis); 4) medusahead (Taeniatherum caput-medusae); and 5) Sandberg bluegrass (Poa secunda). These datasets were generated leveraging field observations from Bureau of Land Management (BLM) Assessment, Inventory,...
We surveyed for pygmy rabbits, Brachylagus idahoensis, in Summer 2003 in Nevada (USA) to better determine the distribution, habitat, and soil patterns of this potentially threatened species. Pygmy rabbits and/or their sign (burrows and fecal pellets) were observed at 261 of 643 survey sites and their known distribution was extended 12 km to the south. Data on topography, soil, lithology, and hydrology were compared between sagebrush habitats where pygmy rabbits and/or their sign was present and absent. A predictive equation was produced and used as a model for characterizing habitats where pygmy rabbits were present. This model successfully explained the occurrence of pygmy rabbits and/or their sign on 56.7% of...
Greater sage-grouse (Centrocercus urophasianus) populations throughout much of their range have been declining. These declines have largely been attributed to the loss or deterioration of sagebrush (Artemisia spp.) habitat. In response government agencies such as the United States Department of Agriculture, Natural Resources Conservation Service are cost-sharing on management practices designed to improve habitat conditions for sage-grouse. Little is known regarding sage-grouse response to various sagebrush management techniques. We studied the effects of reducing sagebrush canopy cover using 2 mechanical (Dixie harrow and Lawson aerator) treatments and 1 chemical (Tebuthiuron) treatment on greater sage-grouse use...
Pathogens and herbivores can severely reduce host fitness, potentially leading to altered succession rates and changes in plant community composition. Thus, to predict vegetation dynamics under climate change, it is necessary to understand how plant pathogens and herbivores will respond. Pathogens and herbivores are predicted to increase under climate warming because the amount of time available for growth and reproduction will increase. To test this prediction, we used a warming experiment in which heaters were suspended over a natural montane meadow for 12 years. In the summer of 2002, we quantified damage by all the observable (aboveground) pathogens and herbivores on six of the most common plant species (Artemisia...
Sagebrush (Artemisia tridentata) comprises up to 99% of the winter and 50% of the summer diets of pygmy rabbits (Brachylagus idahoensis). Few animals specialize on such plants as sagebrush, which contain high levels of plant chemicals that can be toxic. We investigated the nutritional requirements of pygmy rabbits and their ability and propensity to consume sagebrush alone and as part of a mixed diet. We compared diet choices of pygmy rabbits with that of a generalist forager, the eastern cottontail (Sylvilagus floridanus). Pygmy rabbits had a moderately low nitrogen requirement (306.5 mg N/kg0.75/d), but a relatively high energy requirement, needing 750.8 kJ digestible energy/kg0.75/d to maintain their body mass...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
The objective of the project is to improve the infrastructure of the Red Rim Wildlife Habitat Management Area (WHMA) as well as conduct habitat improvements. Two windmills will be upgraded to solar pumps and panels. Six and a half miles of fence will be converted from woven wire to wildlife friendly fencing and 8 miles of fence will have single strand conversion to meet BLM and WGFD wildlife standards (i.e. the bottom wire is too low or the top wire is too high). An exclosure will be erected around a riparian area to keep cattle out, sagebrush will be thinned (approx. 140 acres), weeds will be treated (approx. 200 acres) and native grasses and legumes sown (approx. 170 acres). The Red Rim WHMA is located southwest...
Projections of contemporary and future climate niche for Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis).
thumbnail
North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any...
thumbnail
North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any...
thumbnail
These data were extracted from the CALVEG Existing Vegetation tiles, using the CWHR type, Subalpine (Subalpine conifer) and clipped to the Northern Sierra Nevada Zone for the CA LCC.These CALVEG Existing Vegetation tiles have been crosswalked to other classification systems, including the California Wildlife Habitat Relationship System (CWHR).The CWHR habitat classification scheme has been developed to support the CWHR System, a wildlife information system and predictive model for California's regularly-occurring birds, mammals, reptiles and amphibians. When first published in 1988, the classification scheme had 53 habitats. These habitats — except the non-vegetated Barren habitat — are described in detail in...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...


map background search result map search result map Red Rim Wildlife Habitat Management Area Improvements Remote Sensing Sagebrush Habitat Products for the Gunnison Basin in Colorado (percent bare ground) Remote Sensing Sagebrush Habitat Products for the Gunnison Basin in Colorado (percent herbaceous cover) CWHR Habitat Type - Subalpine, Northern Sierra Nevada Zone Forecasting Future Changes in Sagebrush Distribution and Abundance Precipitation (Mean: Annual) - 2070-2100 - RCP4.5 - Mean Precipitation (Mean: Annual) - 2070-2100 - RCP8.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: July - Sep) - 2070-2100 - RCP4.5 - Min Temperature (Maximum: July) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2070-2100 - RCP8.5 - Min Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2024 Remote Sensing Sagebrush Habitat Products for the Gunnison Basin in Colorado (percent bare ground) Remote Sensing Sagebrush Habitat Products for the Gunnison Basin in Colorado (percent herbaceous cover) CWHR Habitat Type - Subalpine, Northern Sierra Nevada Zone Forecasting Future Changes in Sagebrush Distribution and Abundance Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2024 Precipitation (Mean: Annual) - 2070-2100 - RCP4.5 - Mean Precipitation (Mean: Annual) - 2070-2100 - RCP8.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Mean Precipitation (Mean: Apr - June) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: July - Sep) - 2070-2100 - RCP4.5 - Min Temperature (Maximum: July) - 2020-2050 - RCP4.5 - Mean Temperature (Mean: July - Sep) - 2070-2100 - RCP8.5 - Min