Skip to main content
Advanced Search

Filters: Tags: projections (X) > partyWithName: Conservation Biology Institute (X)

68 results (44ms)   

View Results as: JSON ATOM CSV
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model Mc1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), Water leached in the subsoil (baseflow) and also includes runoff. the output is prsented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain....
thumbnail
For his MS thesis, Brendan Rogers used climate data from the PRISM group (Chris Daly, Oregon State University) at a 30arc second (800m) spatial grain across the western 2/3 of the states of Oregon and Washington to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling to create anomalies from three General Circulation Models (CSIRO Mk3, MIROC 3.2 medres, and Hadley CM 3), each run through three CO2 emission scenarios (SRES B1, A1B, and A2).
thumbnail
For his MS thesis, Brendan Rogers used climate data from the PRISM group (Chris Daly, Oregon State University) at a 30arc second (800m) spatial grain across the western 2/3 of the states of Oregon and Washington to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling to create anomalies from three General Circulation Models (CSIRO Mk3, MIROC 3.2 medres, and Hadley CM 3), each run through three CO2 emission scenarios (SRES B1, A1B, and A2).
thumbnail
For his MS thesis, Brendan Rogers used climate data from the PRISM group (Chris Daly, Oregon State University) at a 30arc second (800m) spatial grain across the western 2/3 of the states of Oregon and Washington to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling to create anomalies from three General Circulation Models (CSIRO Mk3, MIROC 3.2 medres, and Hadley CM 3), each run through three CO2 emission scenarios (SRES B1, A1B, and A2).
thumbnail
For his MS thesis, Brendan Rogers used climate data from the PRISM group (Chris Daly, Oregon State University) at a 30arc second (800m) spatial grain across the western 2/3 of the states of Oregon and Washington to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling to create anomalies from three General Circulation Models (CSIRO Mk3, MIROC 3.2 medres, and Hadley CM 3), each run through three CO2 emission scenarios (SRES B1, A1B, and A2).
thumbnail
Soil residual water corresponds to the model variable "total streamflow"." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical...
thumbnail
For his MS thesis, Brendan Rogers used climate data from the PRISM group (Chris Daly, Oregon State University) at a 30arc second (800m) spatial grain across the western 2/3 of the states of Oregon and Washington (USA) to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling to create anomalies from three General Circulation Models (CSIRO Mk3, MIROC 3.2 medres, and Hadley CM 3), each run through three CO2 emission scenarios (SRES B1, A1B, and A2).
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...
thumbnail
Soil residual water corresponds to the model variable "total streamflow"." In the model MC1, this is calculated (in cm of water) as the water flowing through the soil profile below the last soil layer (streamflow), water leached into the subsoil (baseflow) and also includes runoff. The output is presented here as a monthly average. Soil residual water is part of the model output from Brendan Rogers' MS thesis work. Brendan used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial...


map background search result map search result map Total soil residual water simulated under MIROC 3.2 medres A2 in cm for October for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for May for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for May for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for January for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under CSIRO MK3 A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under CSIRO MK3 A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Projected (2070-2099) mean monthly precipitation (mm) under Hadley B1 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under Miroc B1 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under Hadley B1 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under Hadley A2 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under CSIRO B1 for western Oregon and Washington (USA) Simulated total ecosystem carbon (g C/m2) under CSIRO Mk3 A2 (2070-2099 average) Simulated PNW biomass consumed (g C/m2) under CSIRO Mk3 A2 (2070-2099 ave) Simulated PNW percent area burnt under MIROC 3.2 medres A2 (2070-2099 average) Simulated total ecosystem carbon (g C/m2) under CSIRO Mk3 A2 (2070-2099 average) Simulated PNW biomass consumed (g C/m2) under CSIRO Mk3 A2 (2070-2099 ave) Simulated PNW percent area burnt under MIROC 3.2 medres A2 (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for October for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for May for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under MIROC 3.2 medres A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for August for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for May for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under Hadley CM3 A2 in cm for January for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under CSIRO MK3 A2 in cm for June for the Pacific Northwest, USA (2070-2099 average) Total soil residual water simulated under CSIRO MK3 A2 in cm for April for the Pacific Northwest, USA (2070-2099 average) Projected (2070-2099) mean monthly precipitation (mm) under Hadley B1 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under Miroc B1 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under Hadley B1 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under Hadley A2 for western Oregon and Washington (USA) Projected (2070-2099) mean monthly temperature (degrees C) under CSIRO B1 for western Oregon and Washington (USA)