Skip to main content
Advanced Search

Filters: Tags: pinus resinosa (X)

25 results (246ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 0 (1995) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 50 (2045) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 100 (2095) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 150 (2145) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12847/full): Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and...
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 0 (1995) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 100 (2095) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 50 (2045) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Red Pine (Pinus resinosa) at year 150 (2145) in Minnesota (USA) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
The fine roots of trees are concentrated on lateral branches that arise from perennial roots. They are important in the acquisition of water and essential nutrients, and at the ecosystem level, they make a significant contribution to biogeochemical cycling. Fine roots have often been studied according to arbitrary size classes, e.g., all roots less than 1 or 2 mm in diameter. Because of the size class approach, the position of an individual root on the complex lateral branching system has often been ignored, and relationships between the form of the branching root system and its function are poorly understood. The fine roots of both gymnosperms and angiosperms, which formed ectomycorrhizae (EM) and arbuscular mycorrhizae...


map background search result map search result map Fine root architecture of nine North American trees Minnesota (USA) Climate Change Project: Red Pine at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 0 (1995), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 0 (1995), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 0 (1995), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Red Pine at Year 0 (1995), assuming emissions scenario B2, Hadley3 GCM, contemporary harvest rates and intensity Fine root architecture of nine North American trees