Skip to main content
Advanced Search

Filters: Tags: nir (X)

8 results (285ms)   

View Results as: JSON ATOM CSV
thumbnail
These digital images were taken at select locations over the Potomac River using 3DR Solo unmanned aircraft systems (UAS) in October 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every...
thumbnail
These digital images were taken over an area of the Potomac River in White's Ferry, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 23, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature...
thumbnail
These digital images were taken over an area of the Potomac River in Point of Rocks, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 24, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature...
thumbnail
These digital images were taken over an area of the Potomac River in Point of Rocks, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 24, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, rededge, and near-infrared), which can be used to classify vegetation. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or...
Mapping salt-affected soils in remote rangelands is challenging. We used Landsat 7 ETM data to facilitate digital mapping of gypsic and natric soil areas in the upper Colorado River drainage. Optimum index factor band combinations were used to explore the scene. Normalized difference ratio models and threshold values were developed by comparing spectral signatures with gypsic and natric soil areas verifi ed in the fi eld. Gypsic soil areas were mapped using the normalized difference ratio of Bands 5 and 7 with a threshold >0.11, probably related to the spectral refl ectance of gypsum within a few centimeters of the surface. All sites predicted to be gypsic soil areas were determined to be gypsic by fi eld assessment,...
thumbnail
These digital images were taken over an area of the Potomac River in Shepherdstown, West Virginia using 3DR Solo unmanned aircraft systems (UAS) on October 21, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every pixel. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global...
thumbnail
These digital images were taken over an area of the Potomac River in White's Ferry, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 23, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, red edge, and near-infrared), which can be used to classify vegetation. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation Satellite System and/or...
thumbnail
These digital images were taken over an area of the Potomac River in Brunswick, Maryland using 3DR Solo unmanned aircraft systems (UAS) on October 22, 2019. These images were collected for the purpose of evaluating UAS assessment of river habitat data such as water depth, substrate type, and water clarity. Each UAS was equipped with a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or FLIR Vue Pro R 640 13mm radiometric thermal camera that provides temperature data embedded in every pixel. Some photographs contain black and white targets used as ground control points (GCPs), which were surveyed by a field crew with a high-precision (GNSS) Global Navigation...


    map background search result map search result map Low-altitude aerial imagery from unmanned aerial systems (UAS) at select locations over the Potomac River, October 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Shepherdstown, West Virginia on October 21, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Brunswick, Maryland on October 22, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Point of Rocks, Maryland on October 24, 2019 Multispectral aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in White's Ferry, Maryland on October 23, 2019 Multispectral aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in White's Ferry, Maryland on October 23, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Point of Rocks, Maryland on October 24, 2019 Multispectral aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in Point of Rocks, Maryland on October 24, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Brunswick, Maryland on October 22, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in Shepherdstown, West Virginia on October 21, 2019 Aerial Imagery from unmanned aerial systems (UAS) flights and ground control points: Potomac River in White's Ferry, Maryland on October 23, 2019 Multispectral aerial imagery from unmanned aerial systems (UAS) flights: Potomac River in White's Ferry, Maryland on October 23, 2019 Low-altitude aerial imagery from unmanned aerial systems (UAS) at select locations over the Potomac River, October 2019