Skip to main content
Advanced Search

Filters: Tags: native species (X) > Types: GeoTIFF (X)

57 results (20ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
We evaluated the expected success of habitat recovery in priority areas under 3 different restoration scenarios: passive, planting, and seeding. Passive means no human intervention following a fire disturbance. Under a planting scenario, field technicians methodically plant young sagebrush saplings at the burned site. The seeding scenario involves distributing large amounts of sagebrush seeds throughout the affected area.
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
We evaluated nest site selection and nest survival both before and after a fire disturbance occurred. We then combined those surfaces to determine the areas which were most heavily impacted by the fire.
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
This layer depicts the status, or degree of disturbance, to plant communities on the main Hawaiian Islands. Several layers were uset to create this version (v 3.4). The original HabQual layer was developed by Jon Price and Jim Jacobi based on the mapped land cover units from the Hawaii GAP analysis program (Gon et al. 2006). This map was revised by combining data on land use and the “Bare” category from the NOAA C-CAP 2005 map (NOAA National Ocean Service Coastal Services Center 2012), and adding road corridors to the heavily disturbed category based on the Tiger Roads layer (United States Census Bureau 2014). Additionally, corrections were made to this version of the map by visually inspecting previously mapped...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
This habitat model was developed to delineate suitable habitat for coastal cactus wren (Campylorhynchus brunneicapillus) in southern California. A primary purpose of the model is to identify potential restoration sites that may not currently support cactus patches required by wrens, but which are otherwise highly suitable. These are areas that could be planted with cactus to increase wren populations, an important management objective for many land managers. We used the Partitioned Mahalanobis D2 modeling technique to construct alternative models with different combinations of environmental variables. Variables were calculated at each point in the center of a 150 m x 150 m cell in a grid of points across the landscape....
thumbnail
This habitat model was developed to delineate a sampling frame for regional monitoring of coastal California gnatcatchers (Polioptila californica californica) to determine: 1) percent area occupied (PAO) in high and very high suitability habitat across conserved lands and participating military lands in the U.S. range in southern California; 2) changes in PAO over time; and 3) extinction and colonization rates. One purpose of the model is to identify areas recovering from disturbance, such as wildfire, that may not currently support coastal sage scrub vegetation used by coastal California gnatcatchers, but are otherwise highly suitable. In this way, we can monitor gnatcatcher occupancy associated with habitat changes...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...


map background search result map search result map Carbon Assessment of Hawaii Habitat Status Map (CAH_HabStatus) Coastal Cactus Wren Habitat Suitability Model for Southern California (2015) Coastal California Gnatcatcher Habitat Suitability Model for Southern California (2015) Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Coastal Cactus Wren Habitat Suitability Model for Southern California (2015) Coastal California Gnatcatcher Habitat Suitability Model for Southern California (2015) Carbon Assessment of Hawaii Habitat Status Map (CAH_HabStatus) Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Ambrosia dumosa in the Mojave Desert Species Distribution Model (SDM) for Amsinckia tessellata in the Mojave Desert Species Distribution Model (SDM) for Astragalus didymocarpus in the Mojave Desert Species Distribution Model (SDM) for Descurainia pinnata in the Mojave Desert Species Distribution Model (SDM) for Ericameria cooperi in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Hilaria rigida in the Mojave Desert Species Distribution Model (SDM) for Larrea tridentata in the Mojave Desert Species Distribution Model (SDM) for Lupinus odoratus in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Muhlenbergia porteri in the Mojave Desert Species Distribution Model (SDM) for Oenothera deltoides in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria parryi in the Mojave Desert Species Distribution Model (SDM) for Yucca brevifolia in the Mojave Desert