Skip to main content
Advanced Search

Filters: Tags: machine learning (X)

112 results (166ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The cascade correlation neural network was used to predict the two-year peak discharge (Q2) for major regional river basins of the continental United States (US). Watersheds ranged in size by four orders of magnitude. Results of the neural network predictions ranged from correlations of 0.73 for 104 test data in the Souris-Red Rainy river basin to 0.95 for 141 test data in California. These results are improvements over previous multilinear regressions involving more variables that showed correlations ranging from 0.26 to 0.94. Results are presented for neural networks trained and tested on drainage area, average annual precipitation, and mean basin elevation. A neural network trained on regional scale data in the...
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
Observed water temperatures from 1980-2019 were compiled for 2,332 lakes in the US. These data were used as training, test, and error-estimation data for process-guided deep learning models and the evaluation of process-based models. The data are formatted as a single csv (comma separated values) file with attributes corresponding to the unique combination of lake identifier, time, and depth. Data came from a variety of sources, including the Water Quality Portal, the North Temperate Lakes Long-Term Ecological Research Project, and digitized temperature records from the MN Department of Natural Resources. This dataset is part of a larger data release of lake temperature model inputs and outputs for these same lakes...
thumbnail
Using predicted lake temperatures from uncalibrated, process-based models (PB0) and process-guided deep learning models (PGDL), this dataset summarized a collection of thermal metrics to characterize lake temperature impacts on fish habitat for 881 lakes. Included in the metrics are daily thermal optical habitat areas and a set of over 172 annual thermal metrics.
thumbnail
Groundwater from the Mississippi River Valley alluvial aquifer (MRVA) is a vital resource for agriculture and drinking-water supplies in the central United States. Water availability can be limited in some areas of the aquifer by high concentrations of trace elements, including manganese and arsenic. Boosted regression trees, a type of ensemble-tree machine-learning method, were used to predict manganese concentration and the probability of arsenic concentration exceeding a 10 µg/L threshold throughout the MRVA. Explanatory variables for the BRT models included attributes associated with well location and construction, surficial variables (such as hydrologic position and recharge), variables extracted from a MODFLOW-2005...
thumbnail
Groundwater is a vital resource to the Mississippi embayment region of the central United States. Regional and integrated assessments of water availability that link physical flow models and water quality in principal aquifer systems provide context for the long-term availability of these water resources. An innovative approach using machine learning was employed to predict groundwater pH across drinking water aquifers of the Mississippi embayment. The region includes two principal regional aquifer systems; the Mississippi River Valley alluvial (MRVA) aquifer and the Mississippi embayment aquifer system that includes several regional aquifers and confining units. Based on the distribution of groundwater use for...
thumbnail
These data were compiled to demonstrate new predictive mapping approaches and provide comprehensive gridded 30-meter resolution soil property maps for the Colorado River Basin above Hoover Dam. Random forest models related environmental raster layers representing soil forming factors with field samples to render predictive maps that interpolate between sample locations. Maps represented soil pH, texture fractions (sand, silt clay, fine sand, very fine sand), rock, electrical conductivity (ec), gypsum, CaCO3, sodium adsorption ratio (sar), available water capacity (awc), bulk density (dbovendry), erodibility (kwfact), and organic matter (om) at 7 depths (0, 5, 15, 30, 60, 100, and 200 cm) as well as depth to restrictive...
Tags: Arizona, Colorado, Colorado River, Colorado River Basin, Colorado River Basin above Hoover Dam, All tags...
thumbnail
Observed water temperatures from 1980-2018 were compiled for 877 lakes in Minnesota (USA). There were four lakes included in this data release that did not have temperature observations available at the time of compilation or these data existed elsewhere and were unknown to the compilation team. These data were used as training, test, and error-estimation data for process-guided deep learning models and the evaluation of process-based models. The data are formatted as a single csv (comma separated values) file with attributes corresponding to the unique combination of lake identifier, time, and depth. Data came from a variety of sources, including the Water Quality Portal, the North Temperate Lakes Long-Term Ecological...
thumbnail
Groundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to...
thumbnail
This dataset provides model specifications used to estimate water temperature from a process-based model (Hipsey et al. 2019). The format is a single JSON file indexed for each lake based on the "site_id". This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset includes model inputs that describe local weather conditions for Sparkling Lake, WI. Weather data comes from two sources: locally measured (2009-2017) and gridded estimates (all other time periods). There are two comma-delimited files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of...
thumbnail
Multiple modeling frameworks were used to predict daily temperatures at 0.5m depth intervals for a set of diverse lakes in the U.S. states of Minnesota and Wisconsin. Process-Based (PB) models were configured and calibrated with training data to reduce root-mean squared error. Uncalibrated models used default configurations (PB0; see Winslow et al. 2016 for details) and no parameters were adjusted according to model fit with observations. Deep Learning (DL) models were Long Short-Term Memory artificial recurrent neural network models which used training data to adjust model structure and weights for temperature predictions (Jia et al. 2019). Process-Guided Deep Learning (PGDL) models were DL models with an added...
thumbnail
This dataset includes model inputs that describe weather conditions for the 68 lakes included in this study. Weather data comes from gridded estimates (Mitchell et al. 2004). There are two comma-separated files, one for weather data (one row per model timestep) and one for ice-flags, which are used by the process-guided deep learning model to determine whether to apply the energy conservation constraint (the constraint is not applied when the lake is presumed to be ice-covered). The ice-cover flag is a modeled output and therefore not a true measurement (see "Predictions" and "pb0" model type for the source of this prediction). This dataset is part of a larger data release of lake temperature model inputs and outputs...
thumbnail
Groundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to...
thumbnail
This dataset provides shapefile outlines of the 2,332 lakes that had temperature modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). A csv file of lake metadata is included, which includes lake metadata and all features that were considered for the meta transfer model (not all meta features were used). This dataset is part of a larger data release of lake temperature model inputs and outputs for 2,332 lakes in the U.S. (https://doi.org/10.5066/P9I00WFR).
thumbnail
Groundwater is a vital resource to the Mississippi embayment region of the central United States. Regional and integrated assessments of water availability that link physical flow models and water quality in principal aquifer systems provide context for the long-term availability of these water resources. An innovative approach using machine learning was employed to predict groundwater pH across drinking water aquifers of the Mississippi embayment. The region includes two principal regional aquifer systems; the Mississippi River Valley alluvial (MRVA) aquifer and the Mississippi embayment aquifer system that includes several regional aquifers and confining units. Based on the distribution of groundwater use for...
A boosted regression tree (BRT) model was developed to predict pH conditions in three-dimensions throughout the glacial aquifer system (GLAC) of the contiguous United States using pH measurements in samples from 18,258 wells and predictor variables that represent aspects of the hydrogeologic setting. Model results indicate that the carbonate content of soils and aquifer materials strongly controls pH and when coupled with long flow paths, results in the most alkaline conditions. Conversely, in areas where glacial sediments are thin and carbonate-poor, pH conditions remain acidic. At depths typical of drinking-water supplies, predicted pH > 7.5 – which is associated with arsenic mobilization – occurs more frequently...
This data release component contains water temperature predictions in 118 river catchments across the U.S. Predictions are from the four models described by Rahmani et al. (2020): locally-fitted linear regression, LSTM-noQ, LSTM-obsQ, and LSTM-simQ.


map background search result map search result map Machine-learning model predictions and groundwater-quality rasters of specific conductance, total dissolved solids, and chloride in aquifers of the Mississippi embayment Prediction grids of pH for the Mississippi River Valley Alluvial and Claiborne Aquifers Process-guided deep learning water temperature predictions: 2 Model configurations (lake metadata and parameter values) Process-guided deep learning water temperature predictions: 5c All lakes historical prediction data Process-guided deep learning water temperature predictions: 3c All lakes historical inputs Process-guided deep learning water temperature predictions: 3b Sparkling Lake inputs Depth rasters in aquifers of the Mississippi Embayment Prediction grids of pH Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 2 Water temperature observations Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 7 thermal and optical habitat estimates Predictive soil property map: Organic matter Predictive soil property map: Sodium adsorption ratio Predictive soil property map: Very fine sand content Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 1 Lake information for 2,332 lakes Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 2 Water temperature observations Data for machine learning predictions of pH in the glacial aquifer system, northern USA Machine-learning model predictions and rasters of arsenic and manganese in groundwater in the Mississippi River Valley alluvial aquifer Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 5 Model predictions Process-guided deep learning water temperature predictions: 3b Sparkling Lake inputs Process-guided deep learning water temperature predictions: 2 Model configurations (lake metadata and parameter values) Process-guided deep learning water temperature predictions: 5c All lakes historical prediction data Process-guided deep learning water temperature predictions: 3c All lakes historical inputs Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 7 thermal and optical habitat estimates Walleye Thermal Optical Habitat Area (TOHA) of selected Minnesota lakes: 2 Water temperature observations Machine-learning model predictions and groundwater-quality rasters of specific conductance, total dissolved solids, and chloride in aquifers of the Mississippi embayment Prediction grids of pH for the Mississippi River Valley Alluvial and Claiborne Aquifers Depth rasters in aquifers of the Mississippi Embayment Prediction grids of pH Machine-learning model predictions and rasters of arsenic and manganese in groundwater in the Mississippi River Valley alluvial aquifer Predictive soil property map: Organic matter Predictive soil property map: Sodium adsorption ratio Predictive soil property map: Very fine sand content Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 2 Water temperature observations Predicting Water Temperature Dynamics of Unmonitored Lakes with Meta Transfer Learning: 1 Lake information for 2,332 lakes Data for machine learning predictions of pH in the glacial aquifer system, northern USA Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 5 Model predictions