Skip to main content
Advanced Search

Filters: Tags: long-term (X)

61 results (45ms)   

View Results as: JSON ATOM CSV
Sagebrush (Artemisia spp.)-dominated habitats in the western United States have experienced extensive, rapid changes due to development of natural-gas fields, resulting in localized declines of greater sage-grouse (Centrocercus urophasianus) populations. It is unclear whether population declines in natural-gas fields are caused by avoidance or demographic impacts, or the age classes that are most affected. Land and wildlife management agencies need information on how energy developments affect sage-grouse populations to ensure informed land-use decisions are made, effective mitigation measures are identified, and appropriate monitoring programs are implemented (Sawyer et al. 2006). We used information from radio-equipped...
The article discusses a report published by the U.S. Dept. of Energy (DOE) that examined the technical feasibility of using wind energy for electricity generation. The report assessed the costs, impacts and challenges associated with the production of 20% wind energy by 2030. Results have shown that there is a need for an enhanced transmission infrastructure and an increase in turbine installations to achieve 20% wind energy.
Ecological evaluation is essential for remediation, restoration, and Natural Resource Damage Assessment (NRDA), and forms the basis for many management practices. These include determining status and trends of biological, physical, or chemical/radiological conditions, conducting environmental impact assessments, performing remedial actions should remediation fail, managing ecosystems and wildlife, and assessing the efficacy of remediation, restoration, and long-term stewardship. The objective of this paper is to explore the meanings of these assessments, examine the relationships among them, and suggest methods of integration that will move environmental management forward. While remediation, restoration, and NRDA,...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
Olive-Sided Flycatcher current distribution, change in growing season, current, near-term and long-term future status. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should be cited as the data source...
Many governments mandate the blending of biofuels with fossil fuel supplies. The paper raises the possibility that some firms might choose not to respect such mandates, and cites the UK's experience, where a buyout of the obligation is possible. A simple economic framework is then used to explore some implications of mandate buyouts, including situations when buyouts and road-fuel-tax rebates are applied together. Finally, it discusses the design of buyout-mandate schemes that could release raw materials from biofuel production, following a future world food price shock.
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
Many governments mandate the blending of biofuels with fossil fuel supplies. The paper raises the possibility that some firms might choose not to respect such mandates, and cites the UK's experience, where a buyout of the obligation is possible. A simple economic framework is then used to explore some implications of mandate buyouts, including situations when buyouts and road-fuel-tax rebates are applied together. Finally, it discusses the design of buyout-mandate schemes that could release raw materials from biofuel production, following a future world food price shock.
The removal of the numerous ageing dams in the United States has become an important stream restoration technique. The extent to which the ecological damage done to streams by dams is reversed upon removal is unknown, especially on decadal time scales. The objectives of this study were to determine if macroinvertebrate assemblages within rivers recover following the removal of a dam and to estimate the time needed for recovery. A space‐for‐time substitution approach was used on eight rivers in various stages of recovery following a dam removal, ranging from <1 to 40 years post‐removal. Within each river, macroinvertebrates were sampled in a zone unaffected by the dam removal (reference zone) and two zones impacted...
thumbnail
Predicted current potential habitat Distribution of Dolly Varden. Current, near-term, long-term status of dolly varden based on landscape condition model. Predicted potential habitat Distribution of Dolly Varden and predicted change in mean annual ground temperature from 2010 to 2060. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data...
thumbnail
Current distribution of herbaceous wetlands, with Current, Near-term and Long-term status of herbaceous wetlands based on landscape condition model. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should...
Many governments mandate the blending of biofuels with fossil fuel supplies. The paper raises the possibility that some firms might choose not to respect such mandates, and cites the UK's experience, where a buyout of the obligation is possible. A simple economic framework is then used to explore some implications of mandate buyouts, including situations when buyouts and road-fuel-tax rebates are applied together. Finally, it discusses the design of buyout-mandate schemes that could release raw materials from biofuel production, following a future world food price shock.
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
This map shows the current, near-term, and long-term decadal averages of summer (June, July, August) total precipitation in the YKL study area. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should be...
thumbnail
Current distribution of large floodplains and Current, Near-term and Long-term future status of large floodplains based on landscape condition model. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
The article discusses a report published by the U.S. Dept. of Energy (DOE) that examined the technical feasibility of using wind energy for electricity generation. The report assessed the costs, impacts and challenges associated with the production of 20% wind energy by 2030. Results have shown that there is a need for an enhanced transmission infrastructure and an increase in turbine installations to achieve 20% wind energy.


map background search result map search result map Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts Martha's Vineyard Buzzards Bay Long-term and short-term shoreline change rates for the coast south of Boston, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Long-term and short-term shoreline change rates for the southern coastal region of Cape Cod, Massachusetts calculated without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Long-term and short-term shoreline change rates for Nantucket, Massachusetts calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 BLM REA YKL 2011 Dolly Varden. current habitat, change annual ground temperature, 2010 to 2060, current, near-term, future status BLM REA YKL 2011 Current, Near-Term, and Long-Term Summer Total Precipitation BLM REA YKL 2011 Current distribution of large floodplains and Current, Near-term and Long-term future status of large floodplains based on landscape condition model BLM REA YKL 2011 Current distribution of herbaceous wetlands, with Current, Near-term and Long-term status of herbaceous wetlands based on landscape condition model BLM REA YKL 2011 Olive-Sided Flycatcher current distribution, change growing season, current, near-term, long-term future status Martha's Vineyard Buzzards Bay Long-term and short-term shoreline change rates for the coast south of Boston, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Massachusetts Shoreline Change Project, 2018 Update: A GIS Compilation of Shoreline Change Rates Calculated Using Digital Shoreline Analysis System Version 5.0, With Supplementary Intersects and Baselines for Massachusetts BLM REA YKL 2011 Dolly Varden. current habitat, change annual ground temperature, 2010 to 2060, current, near-term, future status BLM REA YKL 2011 Current, Near-Term, and Long-Term Summer Total Precipitation BLM REA YKL 2011 Current distribution of large floodplains and Current, Near-term and Long-term future status of large floodplains based on landscape condition model BLM REA YKL 2011 Current distribution of herbaceous wetlands, with Current, Near-term and Long-term status of herbaceous wetlands based on landscape condition model BLM REA YKL 2011 Olive-Sided Flycatcher current distribution, change growing season, current, near-term, long-term future status