Skip to main content
Advanced Search

Filters: Tags: life cycle (X)

32 results (10ms)   

View Results as: JSON ATOM CSV
There are unconventional fuels that may serve as near term major replacements for conventional mineral oil and natural gas. These include fuels from oil shale and bitumen, liquid fuels from coal, methane from methane hydrates, biofuels and the secondary fuel hydrogen. Here, these fuels will be reviewed as to their presumable stocks and life cycle wastes, emissions and inputs of natural resources. The unconventional fuels are usually characterized by a relatively poor source-to-burner energy efficiency when compared with current conventional mineral oil and gas. Apart from some varieties of hydrogen and biofuel, their life cycles are characterized by relatively large water inputs, emissions, and wastes. The unconventional...
The Swedish programme for geological disposal of spent nuclear fuel is approaching major milestones in the form of permit applications for an encapsulation plant and a deep geologic repository. This paper presents an overview of the bedrock and surface modelling work that comprises a major part of the on-going site characterization in Sweden and that results in syntheses of the sites, called site descriptions. The site description incorporates descriptive models of the site and its regional setting, including the current state of the geosphere and the biosphere as well as natural processes affecting long-term evolution. The site description is intended to serve the needs of both repository engineering with respect...
Environmental monitoring has been an ongoing activity on the U.S. Department of Energy's Hanford Site in southeastern Washington for almost 50 years. Objectives are to detect and assess potential impacts of Site operations on air, surface and ground waters, foodstuffs, fish, wildlife, soil and vegetation. Data from monitoring effects are used to calculate the overall radiological dose to humans working onsite or residing in nearby communities. In 1989, measured Hanford Site perimeter concentrations of airborne radionuclides were below applicable guidelines. Concentrations of radionuclides and nonradiological water quality in the Columbia River were in compliance with applicable standards. Foodstuffs irrigated with...
Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with ‘zero-energy’ use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a...
Wind power forecasts are in various ways valuable for users in decision-making processes. However, most forecasts are deterministic, and hence possibly important information about uncertainty is not available. Complete information about future production can be obtained by using probabilistic forecasts, and this article demonstrates how such forecasts can be created by means of local quantile regression. The approach has several advantages, such as no distributional assumptions and flexible inclusion of predictive information. In addition, it can be shown that, for some purposes, forecasts in terms of quantiles provide the type of information required to make optimal economic decisions. The methodology is applied...
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume-low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MW supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent...
Due to its compatibility with the current energy infrastructures and the potential to reduce CO2 emissions significantly, CO2 capture and geological storage is recognised as one of the main options in the portfolio of greenhouse gas mitigation technologies being developed worldwide. The CO2 capture technologies offer a number of alternatives, which involve different energy consumption rates and subsequent environmental impacts While the main objective of this technology is to minimise the atmospheric greenhouse gas emissions, it is also important to ensure that CO2 capture and storage does not aggravate other environmental concerns This requires a holistic and system-wide environmental assessment rather than focusing...
Environmental monitoring has been an ongoing activity on the U.S. Department of Energy's Hanford Site in southeastern Washington for almost 50 years. Objectives are to detect and assess potential impacts of Site operations on air, surface and ground waters, foodstuffs, fish, wildlife, soil and vegetation. Data from monitoring effects are used to calculate the overall radiological dose to humans working onsite or residing in nearby communities. In 1989, measured Hanford Site perimeter concentrations of airborne radionuclides were below applicable guidelines. Concentrations of radionuclides and nonradiological water quality in the Columbia River were in compliance with applicable standards. Foodstuffs irrigated with...
There are unconventional fuels that may serve as near term major replacements for conventional mineral oil and natural gas. These include fuels from oil shale and bitumen, liquid fuels from coal, methane from methane hydrates, biofuels and the secondary fuel hydrogen. Here, these fuels will be reviewed as to their presumable stocks and life cycle wastes, emissions and inputs of natural resources. The unconventional fuels are usually characterized by a relatively poor source-to-burner energy efficiency when compared with current conventional mineral oil and gas. Apart from some varieties of hydrogen and biofuel, their life cycles are characterized by relatively large water inputs, emissions, and wastes. The unconventional...
The Swedish programme for geological disposal of spent nuclear fuel is approaching major milestones in the form of permit applications for an encapsulation plant and a deep geologic repository. This paper presents an overview of the bedrock and surface modelling work that comprises a major part of the on-going site characterization in Sweden and that results in syntheses of the sites, called site descriptions. The site description incorporates descriptive models of the site and its regional setting, including the current state of the geosphere and the biosphere as well as natural processes affecting long-term evolution. The site description is intended to serve the needs of both repository engineering with respect...
The Swedish programme for geological disposal of spent nuclear fuel is approaching major milestones in the form of permit applications for an encapsulation plant and a deep geologic repository. This paper presents an overview of the bedrock and surface modelling work that comprises a major part of the on-going site characterization in Sweden and that results in syntheses of the sites, called site descriptions. The site description incorporates descriptive models of the site and its regional setting, including the current state of the geosphere and the biosphere as well as natural processes affecting long-term evolution. The site description is intended to serve the needs of both repository engineering with respect...
The Swedish programme for geological disposal of spent nuclear fuel is approaching major milestones in the form of permit applications for an encapsulation plant and a deep geologic repository. This paper presents an overview of the bedrock and surface modelling work that comprises a major part of the on-going site characterization in Sweden and that results in syntheses of the sites, called site descriptions. The site description incorporates descriptive models of the site and its regional setting, including the current state of the geosphere and the biosphere as well as natural processes affecting long-term evolution. The site description is intended to serve the needs of both repository engineering with respect...