Skip to main content
Advanced Search

Filters: Tags: landslide (X)

182 results (22ms)   

View Results as: JSON ATOM CSV
thumbnail
This inventory describes the landslides triggered by the M7.0 Sicily, Italy earthquake that occurred on 1908-12-28 at 4:20:26 UTC. The inventory comes from the Italian Catalogue of Earthquake-Induced Ground Effects (Italian acronym CEDIT) by Martino and others (2014), which contains inventories from multiple earthquakes. To obtain the most up to date version of the entire, original catalog along with more details about its compilation, please visit the CEDIT webpage on the website of the Centre for Research (CERI) of the Department of Earth Sciences in the Sapienza University of Rome: http://www.ceri.uniroma1.it/index.php/web-gis/cedit/. Care should be taken when comparing with other inventories because different...
Upon reactivation, movement of deep-seated landslides in the Greater Pittsburgh region may persist for long periods of time. Monitoring equipment was located at two sites on a deep-seated rockslide in Aleppo Township, Pennsylvania to establish relationships between precipitation and changes in the state of activity and velocity. Precipitation, snow depth, and air temperature are monitored at a weather station (ARS_WS) located in a relatively flat, open area in the northern part of the rockslide. Displacement and soil moisture are monitored at a second site located in the southern part of a graben (ARS_GR) in the head of the rockslide. At ARS_WS, instrumentation includes a tipping bucket rain gauge, temperature probe,...
thumbnail
Global Landslide Hazard Distribution is a 2.5 by 2.5 minute grid of global landslide and snow avalanche hazards based upon work of the Norwegian Geotechnical Institute (NGI). The hazards mapping of NGI incorporates a range of data including slope, soil, soil moisture conditions, precipitation, seismicity, and temperature. Shuttle Radar Topography Mission (SRTM) elevation data at 30 seconds resolution are also incorporated. Hazards values 4 and below are considered neglibile and only values 5 through 9 are utilized in further analyses. To ensure compatibiliy with other datasets, 1 is added to each of the values to provide a hazard ranking ranging 6 through 10 in increasing hazard. The dataset is a result of the collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
In this report, we evaluate potential tsunami hazards for southeastern Alaska communities of Elfin Cove, Gustavus, and Hoonah and numerically model the extent of inundation from tsunami waves generated by tectonic and landslide sources. We perform numerical modeling of historic tsunami events, such as the tsunami triggered by the 1964 Great Alaska Earthquake, and the tsunami waves generated by the recent 2011 Tohoku and 2012 Haida Gwaii earthquakes. Hypothetical tsunami scenarios include variations of the extended 1964 rupture, megathrust earthquakes in the Prince William Sound and Alaska Peninsula regions, and a Cascadia megathrust earthquake. Local underwater landslide events in Taylor Bay and Port Frederick,...
Intermittent movement of the Red Creek Landslide has caused settling and cracking of U.S. Highway 50 west of Gunnison, Colorado, for more than 30 years. Significant degradation of the roadway has resulted in extensive repair costs and traffic delays. Geomorphic and computer stability analyses support the theory that the active Red Creek Landslide is the partial reactivation of a larger, ancient paleolandslide, with a basal rupture surface located predominantly in the Morrison Formation. The original paleolandslide may have been triggered by an earthquake coupled with a high water table. Creation of the Blue Mesa Reservoir submerged approximately 50 percent of the paleolandslide. Some clay layers within the Morrison...
thumbnail
Summary This data release contains postprocessed model output from simulations of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A modeled tsunami wave was generated by rapid motion of unstable material into Barry Arm Fjord. This wave propagated through Prince William Sound and then into Passage Canal east of Whittier. Here we consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b) and use a simulation setup similar to that work. The results presented here are not identical to those presented in Barnhart and others (2021a, 2021b) because the results in this data release were obtained using an expanded dataset of topography and...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
On 26 October 2011, engineers blew a hole in the base of Washington state's Condit Dam, loosing nearly a million cubic meters of water in an instant. The surge of water, sand, and mud marked the end of the 38-meter-tall concrete dam that had blocked the White Salmon River for nearly 100 years and the beginning of a rapid transformation of the downstream environment. Using river gauge measurements, time-lapse photography, and other techniques, Wilcox et al. tracked how the White Salmon River evolved in the wake of the breach.
thumbnail
This inventory describes the landslides triggered by the M6.9 Southern Italy earthquake that occurred on 1980-11-23 at 18:34:53 UTC. The inventory comes from the Italian Catalogue of Earthquake-Induced Ground Effects (Italian acronym CEDIT) by Martino and others (2014), which contains inventories from multiple earthquakes. To obtain the most up to date version of the entire, original catalog along with more details about its compilation, please visit the CEDIT webpage on the website of the Centre for Research (CERI) of the Department of Earth Sciences in the Sapienza University of Rome: http://www.ceri.uniroma1.it/index.php/web-gis/cedit/. Care should be taken when comparing with other inventories because different...
thumbnail
This inventory was originally created by Papathanassiou and others (2013) describing the landslides triggered by the M 6.3 Lefkada, Greece earthquake that occurred on 14 August 2003 at 05:14:54 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S....
thumbnail
This inventory was originally created by Sepulveda and others (2010) describing the landslides triggered by the M6.2 Aysen Fjord (Chile) earthquake that occurred on 2007-04-21 at 17:53:46 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
During September 2017, Hurricane Maria caused widespread landsliding throughout mountainous regions of Puerto Rico, with more than 71,000 landslides being subsequently identified from aerial imagery (Hughes et al., 2019). Most landslides apparently mobilized as debris flows and occurred within soil (unconsolidated material overlying saprolite and bedrock) and saprolite overlying less-weathered rock (e.g., Bessette-Kirton et al., 2019a). To better understand the characteristics of Maria-triggered landslides, debris flows, and materials in which landslides occurred, we performed reconnaissance-level studies of 118 landslides, 46 soil exposures generally within landslide scars, 24 saprolite exposures, and 37 rock exposures....
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide...
thumbnail
The Alaska Division of Geological & Geophysical Surveys (DGGS), in partnership with the U.S. National Cooperative Geologic Mapping Program, mapped approximately 450 mi2 of the Talkeetna Mountains region of central Alaska at 1:50,000 scale over the course of six weeks in 2014. This area contains significant exposures of Late Triassic mafic volcanics and gabbro sills that have been the focus of region-wide exploration for the Strategic and Critical platinum-group elements (PGEs). The area also exposes numerous inactive and possibly active faults which project through the area of proposed hydropower development. The resulting geologic map offers an improved understanding of the geology, structural history, and mineral...
Tags: 40Ar/39Ar, Aerial Geology, Aerial Photography, Alluvial, Alluvial Deposits, All tags...
thumbnail
We evaluate potential tsunami hazards for the city of Valdez and numerically model the extent of inundation from tsunamis generated by earthquake and landslide sources. Tsunami scenarios include a repeat of the tsunami triggered by the 1964 Great Alaska Earthquake, as well as hypothetical tsunamis generated by an extended 1964 rupture, a Cascadia megathrust earthquake, and earthquakes from the Prince William Sound and Kodiak asperities of the 1964 rupture. Local underwater landslide events in Port Valdez are also considered as credible tsunamigenic scenarios. Results of numerical modeling are verified by simulating the tectonic and landslide-generated tsunamis in Port Valdez observed during the 1964 earthquake....
thumbnail
Global Landslide Mortality Risks and Distribution is a 2.5 by 2.5 minute grid of global landslide mortality risks. Gridded Population of the World (GPW) Version 3 (beta) data provide a baseline estimation of population per grid cell from which to estimate potential mortality risks due to landslide hazard. Mortality loss estimates per hazard event are caculated using regional, hazard-specific mortality records of the Emergency Events Database (EM-DAT) that span the 20 years between 1981 and 2000. Data regarding the frequency and distribution of landslide hazard are obtained from the Global Landslide Hazard Distribution dataset. In order to more accurately reflect the confidence associated with the data and procedures,...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
The files consist of two types: tabulated data files and graphical map files. Data files consist of three .csv files, representing three experiment dates (2017_05_23, 2017_05_24, 2017_05_25). Each of these files contains multiple columns of data, with each column representing either a time measurement or the value of a physical quantity measured at that time (e.g., flow depth, pore pressure, normal stress, etc.). Map files consist of three .pdf files, each representing an experiment date listed above. The maps show the thickness of the sediment deposited onto the runout pad after each experiment. Sediment thickness was determined using photogrammetery software from Agisoft.


map background search result map search result map Global Landslide Mortality Risks and Distribution Global Landslide Hazard Distribution Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-A Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-K Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-B Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-J Papathanassiou and others (2013) Geologic map of the Talkeetna Mountains C-4 Quadrangle and adjoining areas, central Alaska Tsunami inundation maps of Port Valdez, Alaska Tsunami inundation maps of Elfin Cove, Gustavus, and Hoonah, Alaska Sensor data from debris-flow experiments conducted in May, 2017, at the USGS debris-flow flume, HJ Andrews Experimental Forest, Blue River, Oregon Sepúlveda and others (2010) Martino and others (2014) - M6.9 Southern Italy, 1980 Martino and others (2014) - M7.0 Sicily, Italy, 1908 Monitoring data from the Aleppo rockslide, Allegheny County, Pennsylvania, November 2013 - December 2018 Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Landslide Deposit Boundaries for the Little North Santiam River Basin, Oregon Field observations of landslides and related materials following Hurricane Maria, Puerto Rico Sensor data from debris-flow experiments conducted in May, 2017, at the USGS debris-flow flume, HJ Andrews Experimental Forest, Blue River, Oregon Monitoring data from the Aleppo rockslide, Allegheny County, Pennsylvania, November 2013 - December 2018 Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Papathanassiou and others (2013) Tsunami inundation maps of Port Valdez, Alaska Landslide Deposit Boundaries for the Little North Santiam River Basin, Oregon Martino and others (2014) - M7.0 Sicily, Italy, 1908 Sepúlveda and others (2010) Geologic map of the Talkeetna Mountains C-4 Quadrangle and adjoining areas, central Alaska Tsunami inundation maps of Elfin Cove, Gustavus, and Hoonah, Alaska Martino and others (2014) - M6.9 Southern Italy, 1980 Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-A Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-K Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-B Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-J Global Landslide Hazard Distribution Global Landslide Mortality Risks and Distribution