Skip to main content
Advanced Search

Filters: Tags: inlandWaters (X) > Types: Citation (X)

1,108 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads) and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2–3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was...
thumbnail
Stream fragmentation alters the structure of aquatic communities on a global scale, generally through loss of native species. Among riverscapes in the Great Plains of North America, stream fragmentation and hydrologic alteration (flow regulation and dewatering) are implicated in the decline of native fish diversity. This study documents the spatio–temporal distribution of fish reproductive guilds in the fragmented Arkansas and Ninnescah rivers of south-central Kansas using retrospective analyses involving 63 years of fish community data. Pelagic-spawning fishes declined throughout the study area during 1950–2013, including Arkansas River shiner (Notropis girardi) last reported in 1983, plains minnow (Hybognathus...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: CATFISHES/MINNOWS, Colorado, Colorado, FISH, Federal resource managers, All tags...
thumbnail
WaSSI (Water Supply Stress Index) predicts how climate, land cover, and human population change may impact water availability and carbon sequestration at the watershed level (about the size of a county) across the lower 48 United States. WaSSI users can select and adjust temperature, precipitation, land cover, and water use factors to simulate change scenarios for any timeframe from 1961 through the year 2100.Simulation results are available as downloadable maps, graphs, and data files that users can apply to their unique information and project needs. WaSSI generates useful information for natural resource planners and managers who must make informed decisions about water supplies and related ecosystem services...
thumbnail
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
thumbnail
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
thumbnail
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
thumbnail
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
thumbnail
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
thumbnail
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
thumbnail
The Geographic Names Information System (GNIS) is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
thumbnail
NOTE: This download link includes Fish Regions, Freshwater Ecoregions, and Freshwater Resilience. Freshwater ecoregions provide a global biogeographic regionalization of the Earth's freshwater biodiversity. These units are distinguished by patterns of native fish distribution resulting from large-scale geoclimatic processes and evolutionary history. The freshwater ecoregion boundaries generally, though not always, correspond with those of watersheds. Within individual ecoregions there will be turnover of species, such as when moving up or down a river system, but taken as a whole an ecoregion will typically have a distinct evolutionary history and/or suite of ecological processes (Abell et al. 2008). The WWF defined...
thumbnail
Resilient stream systems are those that will support a full spectrum of biodiversity and maintain their functional integrity even as species compositions and hydrologic properties change in response to shifts in ambient conditions due to climate change. We examined all connected stream networks in the Northeast and Mid-Atlantic for seven characteristics correlated with resilience. These included four physical properties (network length, number of size classes, number of gradients classes and number of temperature classes), and three condition characteristics (risk of hydrologic alterations, natural cover in the floodplain, and amount of impervious surface in the watershed). A network was defined as a continuous...
thumbnail
Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrostand snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fishand Creek drainage basin is composed of three watersheds that represent a gradient of theACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevationmodel, and river gauging and climate records to better understand ACP watershed structureand processes. We show that...
thumbnail
Arctic grayling (Thymallus arcticus) have a life-history strategy specifically adapted to the extreme climate of the North. These fish migrate to spawning grounds just after breakup in the spring, then migrate to feeding sites in early summer, and finally in the fall migrate back to their overwintering sites. The Kuparuk River is a perennial stream originating in the northern foothills of the Brooks Range on the North Slope of Alaska. Sections of the Kuparuk are periodically intermittent in that, during low flows in the system, these channel reaches appear dry. The flow varies between surface and subsurface in this permafrost-dominated environment, with subsurface flow being limited to the unfrozen thaw bulb around...
thumbnail
Acoustic Doppler current profiler (ADCP) data were collected along a prescribed navigated course throughout Calumet Harbor on May 6, 2016 to determine the spatial distribution of layer-averaged velocities. The data were layer-averaged in 2-foot increments of depth from the bed to the water surface, and temporally-averaged over a 30-second window to reduce noise. Data were processed using the Velocity Mapping Toolbox (Parsons and other, 2013). Any data assigned a value of "-9999" are invalid or missing and should not be used for analysis. Parsons, D. R., Jackson, P. R., Czuba, J. A., Engel, F. L., Rhoads, B. L., Oberg, K. A., Best, J. L., Mueller, D. S., Johnson, K. K. and Riley, J. D. (2013), Velocity Mapping...
thumbnail
This contains the Australasian portion of the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the...
thumbnail
This dataset contains the Flow Accumulation (FA) grid for the Asian continent from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The DEM data were developed and distributed by processing units. There are 19 processing units for Asia. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. as_dem_3_2.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment...


map background search result map search result map Interacting Effects of Discharge and Channel Morphology on Transport of Semibuoyant Fish Eggs in Large, Altered River Systems Freshwater Resilience, All Streams, Stratified by Fish Region and Freshwater Ecoregion, Northeast U.S. Freshwater Ecoregions, Northeast WASSI Future Change in Water Supply Stress Index 1991-2010 Amount of inflow stored in upstream dams-rivers Spatial distribution of layer-averaged velocity measured in the Calumet Harbor, Illinois (May 6, 2016) siteID-019 Gallatin River at I-90 near Manhattan, MT GNIS States, Territories, Associated Areas of the United States Text Format for Arkansas GNIS States, Territories, Associated Areas of the United States Text Format for Florida GNIS States, Territories, Associated Areas of the United States Text Format for Montana GNIS States, Territories, Associated Areas of the United States Text Format for Oklahoma GNIS States, Territories, Associated Areas of the United States Text Format for South Carolina GNIS States, Territories, Associated Areas of the United States Text Format for Washington GNIS States, Territories, Associated Areas of the United States Text Format for Wisconsin SiteID-006 Snake River at West River Road, near Shelley, ID Linking North Slope of Alaska climate, hydrology, and fish migration Publication: Fragmentation and drying ratchet down Great Plains stream fish diversity Drainage Network Structure and Hydrologic Behavior of Three Lake-Rich Watersheds on the Arctic Coastal Plain, Alaska siteID-019 Gallatin River at I-90 near Manhattan, MT Spatial distribution of layer-averaged velocity measured in the Calumet Harbor, Illinois (May 6, 2016) SiteID-006 Snake River at West River Road, near Shelley, ID Linking North Slope of Alaska climate, hydrology, and fish migration Drainage Network Structure and Hydrologic Behavior of Three Lake-Rich Watersheds on the Arctic Coastal Plain, Alaska GNIS States, Territories, Associated Areas of the United States Text Format for South Carolina GNIS States, Territories, Associated Areas of the United States Text Format for Arkansas GNIS States, Territories, Associated Areas of the United States Text Format for Washington GNIS States, Territories, Associated Areas of the United States Text Format for Wisconsin Interacting Effects of Discharge and Channel Morphology on Transport of Semibuoyant Fish Eggs in Large, Altered River Systems GNIS States, Territories, Associated Areas of the United States Text Format for Oklahoma GNIS States, Territories, Associated Areas of the United States Text Format for Florida GNIS States, Territories, Associated Areas of the United States Text Format for Montana Publication: Fragmentation and drying ratchet down Great Plains stream fish diversity WASSI Future Change in Water Supply Stress Index 1991-2010 Amount of inflow stored in upstream dams-rivers Freshwater Resilience, All Streams, Stratified by Fish Region and Freshwater Ecoregion, Northeast U.S. Freshwater Ecoregions, Northeast