Filters: Tags: hyperspectral imaging (X)
31 results (75ms)
Filters
Date Range
Extensions Types Contacts
Categories Tag Types Tag Schemes |
Corescan© Hyperspectral Core Imager Mark III (HCI-III) system data were acquired for hand samples, and subsequent billets made from the hand samples, collected during the U.S. Geological Survey (USGS) 2014, 2015, and 2016 field seasons in the Nabesna area of the eastern Alaska Range. This area contains exposed porphyry deposits and hand samples were collected throughout the region in support of the HyMap imaging spectrometer survey (https://doi.org/10.5066/F7DN435W) (Kokaly and others, 2017a). The HCI-III system consists of three different components. The first is an imaging spectrometer which collects reflectance data with a spatial resolution of approximately 500 nanometers (nm) for 514 spectral channels covering...
Approximately 1,900 line square kilometers of imagery were collected using a HyMap™ sensor (Cocks and others, 1998) mounted on a modified Piper Navajo aircraft. The aircraft was flown at an altitude of approximately 5,050 m (3,480 m above the mean ground surface elevation of 1570 m) resulting in average ground spatial resolution of 6.7 m. Solar elevation and azimuth angles ranged from 42.0-48.3° (average 46.2°) and 134.2-182.4° (average 155°), respectively. HyMap measured reflected sunlight in 126 narrow channels that cover the wavelength region of 455 to 2,483 nm. Data were delivered by the operators of the sensor (HyVista Corp., Australia) in units of radiance (data are available in Kokaly and others, 2017)....
Reflectance data from HyMap™ were processed using the Material Identification and Characterization Algorithm (MICA), a module of the USGS PRISM (Processing Routines in IDL for Spectroscopic Measurements) software (Kokaly, 2011), programmed in Interactive Data Language (IDL; Harris Geospatial Solutions, Broomfield, Colorado). The HyMap reflectance data are provided and described in this data release. MICA identifies the spectrally predominant mineral(s) in each pixel of imaging spectrometer data by comparing continuum-removed spectral features in the pixel’s reflectance spectrum to continuum-removed absorption features in reference spectra of minerals, vegetation, water, and other materials. Linear continuum removal...
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alaska,
Alaska,
Alaska Range,
Bond Creek,
Canada,
This data release includes geochemical, x-ray diffraction mineralogical, and electron probe microanalysis (EPMA) data on rocks, soils, and sediments collected near the Orange Hill and Bond Creek porphyry copper deposits, Nabesna quadrangle, Alaska. Geochemical analyses were completed by a laboratory under contract with the U.S. Geological Survey (USGS). Electron microprobe and x-ray diffraction mineralogical analyses were completed by personnel of the Central Region Minerals Program in Denver, Colorado. The samples were collected and analyzed during 2014 to 2016, selected to help characterize the distribution and composition of mineralized and unmineralized geologic materials in this remote part of the eastern Alaska...
Categories: Data;
Types: Citation,
Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Alaska,
Alaska Range,
Alder Gulch,
Bond Creek,
Chathenda Creek,
Mineral predominance data were a derivative product from the Corescan© reflectance data. Corescan Hyperspectral Core Imager Mark III (HCI-III) system data were acquired for hand samples, and subsequent billets made from the hand samples, collected during the U.S. Geological Survey (USGS) 2014, 2015, and 2016 field seasons in the Nabesna area of the eastern Alaska Range. This area contains exposed porphyry deposits and hand samples were collected throughout the region in support of the HyMap imaging spectrometer survey (https://doi.org/10.5066/F7DN435W) (Kokaly and others, 2017a). The HCI-III system consists of three different components. The first is an imaging spectrometer which collects reflectance data with a...
Imaging spectrometer (hyperspectral) data were collected using the HyMap™ sensor over the Nabesna Area of Interest (AOI) in the eastern Alaska Range, July 14 and July 21, 2014. The primary study area was a remote part of the eastern Alaska Range where porphyry deposits are exposed. The HyMap imaging spectrometer measured reflected sunlight in 126 narrow channels spanning the 0.4 to 2.5 micron wavelength region of the electromagnetic spectrum. The data were collected at a nominal 6-m ground-instantaneous field of view (GIFOV). A total 1,900 square kilometers were collected. This data release provides flight line data for the survey and a report describing the dataset and procedures.
These data are spatial polygon data and remote sensing image-based classification maps of surface water and vegetation species for 2012 along the Rio Grande River in Big Bend National Park in Texas. The geographic extent of the classification spans from the end of Mariscal Canyon to 5 km after the end of Boquillas Canyon, totaling approximately 77 Km of the river. The maps are also restricted to a digitized extent of riparian vegetation that is defined by the alluvial valley of the Rio Grande River. The 2012 classification maps are created using 20 cm multispectral (Near Infrared (NIR), Red and Green) imagery and LiDAR data collected in June 2012. The accuracy assessment for the classification product is based on...
A map of the wavelength position of the white mica 2,200 nanometer (nm) Al-OH absorption feature was compiled for a region of Nabesna, Alaska, using HyMap™ reflectance data provided and described in this data release. White mica wavelength position was computed for each pixel with spectrally predominant muscovite or illite. The computation was made using a function of the USGS PRISM (Processing Routines in IDL for Spectroscopic Measurements) software (Kokaly, 2011), programmed in Interactive Data Language (IDL; Harris Geospatial Solutions, Broomfield, Colorado). The PRISM function applies linear continuum-removal (Clark and Roush, 1984) to the 2,200 nm feature and fits a parabola to three channels: the channel...
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alaska,
Alaska,
Alaska Range,
Bond Creek,
Canada,
Imaging spectrometer (hyperspectral) data were collected using the HyMap™ sensor over the Nabesna Area of Interest (AOI) in the eastern Alaska Range, July 14 and July 21, 2014. The primary study area was a remote part of the eastern Alaska Range where porphyry deposits are exposed. The HyMap imaging spectrometer measured reflected sunlight in 126 narrow channels spanning the 0.4 to 2.5 micron wavelength region of the electromagnetic spectrum. The data were collected at a nominal 6-m ground-instantaneous field of view (GIFOV). A total 1,900 square kilometers were collected. This data release provides flight line data for the survey and a report describing the dataset and procedures.
Imaging spectrometer (hyperspectral) data were collected using the HyMap™ sensor over the Nabesna Area of Interest (AOI) in the eastern Alaska Range, July 14 and July 21, 2014. The primary study area was a remote part of the eastern Alaska Range where porphyry deposits are exposed. The HyMap imaging spectrometer measured reflected sunlight in 126 narrow channels spanning the 0.4 to 2.5 micron wavelength region of the electromagnetic spectrum. The data were collected at a nominal 6-m ground-instantaneous field of view (GIFOV). A total 1,900 square kilometers were collected. This data release provides flight line data for the survey and a report describing the dataset and procedures.
Corescan© Hyperspectral Core Imager Mark III (HCI-III) system data were acquired for hand samples, and subsequent billets made from the hand samples, collected during the U.S. Geological Survey (USGS) 2014, 2015, and 2016 field seasons in the Nabesna area of the eastern Alaska Range. This area contains exposed porphyry deposits and hand samples were collected throughout the region in support of the HyMap imaging spectrometer survey (https://doi.org/10.5066/F7DN435W) (Kokaly and others, 2017a). The HCI-III system consists of three different components. The first is an imaging spectrometer which collects reflectance data with a spatial resolution of approximately 500 nanometers (nm) for 514 spectral channels covering...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service,
Shapefile;
Tags: Alaska,
Alaska,
Alaska Range,
Bond Creek,
Canada,
SPECPRsplib07 This compressed archive includes: Files, in SPECPR format, containing spectral data and associated metadata descriptions: measured spectra (splib07a) spectra interpolated to a higher number of more finely-spaced channels (splib07b) spectra convolved to other spectrometers, for example Analytical Spectral Devices standard resolution (s07_ASD) AVIRIS-Classic 2014 characteristics (s07_AV14) Hyperspectral Mapper (HyMap) 2014 characteristics (s07_HY14) and others spectra resampled to multispectral sensors: ASTER Landsat 8 OLI Sentinel-2 MSI Worldview-3 Folders containing information linked to from the metadata descriptions in the SPECPR files: README: contains a HTML version of the USGS Data...
Approximately 1,900 square kilometers of imagery were collected from July 14 to July 21, 2014 using a HyMap™ sensor (Cocks and others, 1998) mounted on a modified Piper Navajo aircraft. The survey area covered parts of the Wrangell and Nutzotin Mountains in the eastern Alaska Range near Nabesna, Alaska. The aircraft was flown at an altitude of approximately 5,050 meters (m) (3,480 m above the mean ground surface elevation of 1570 m) resulting in average ground spatial resolution of 6.7 m. HyMap measured reflected sunlight in 126 narrow channels that cover the wavelength region of 455 to 2,483 nanometers (nm). Data were delivered by the operators of the sensor (HyVista Corp., Australia) in units of radiance (Kokaly...
Categories: Data Release - Revised;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Alaska,
Alaska,
Alaska Range,
Bond Creek,
Canada,
Invasive plants impose threats to both natural and managed ecosystems. Downy brome is among the most aggressive invasive weeds that has infested the shrub-steppe ecoregion of eastern Washington. Hyperspectral remote sensing has potential for early detection and for monitoring the spread of downy brome?information that is essential for developing effective management strategies. Two airborne hyperspectral Advanced Visible Infrared Imaging Spectrometer (AVIRIS) images (electromagnetic spectrum ranging from 400 to 2,500 nm) were acquired at a nominal 4-m ground resolution over a study area in south-central Washington on July 27, 2000 and May 5, 2003. We used a mixture-tuned matched filtering (MTMF) algorithm to classify...
Categories: Publication;
Types: Citation,
Journal Citation;
Tags: MTMF,
Weed Science,
hyperspectral imaging,
invasive species mapping,
remote sensing
GIFplots Files containing GIF images of spectral plots: GIFplots_splib07a.zip contains plots of measured spectra, including plots showing the full wavelength range of the measured spectra, organized in chapter sub-folders as described previously for the ASCII data. plots showing specific portions of the electromagnetic spectrum are organized folders within the “plots_by_wavelength_region” folder, including: range1_uv_to_visible (0.2 - 1.0 microns) range2_visible_to_swir (0.2 - 2.5 microns) range3_swir (1.5 - 5.5 microns) range4_swir_to_mir (2.5 - 25 microns) range5_swir_to_fir_wavenumber (4,000 - 50 cm-1 which spans 2.5 - 200 microns) plots of spectra interpolated to a higher number of more finely-spaced...
ASCIIdata Files containing spectral data in ASCII text format: measured spectra (ASCIIdata_splib07a.zip), including wavelength positions and bandpass (Full-Width at Half-Maximum; FWHM) values of channels in the spectrometers utilized spectra interpolated to a higher number of more finely-spaced channels (ASCIIdata_splib07b.zip) spectra convolved to other spectrometers, including the wavelength positions and bandpass (FWHM) values of the channels in the spectrometers, for example Analytical Spectral Devices standard resolution (ASCIIdata_splib07b_cvASD.zip) AVIRIS-Classic 2014 characteristics (ASCIIdata_splib07b_cvAVIRISc2014.zip) Hyperspectral Mapper 2014 characteristics (ASCIIdata_splib07b_cvHYMAP2014.zip) and...
Imaging spectrometer (hyperspectral) data were collected using the HyMap™ sensor over the Nabesna Area of Interest (AOI) in the eastern Alaska Range, July 14 and July 21, 2014. The primary study area was a remote part of the eastern Alaska Range where porphyry deposits are exposed. The HyMap imaging spectrometer measured reflected sunlight in 126 narrow channels spanning the 0.4 to 2.5 micron wavelength region of the electromagnetic spectrum. The data were collected at a nominal 6-m ground-instantaneous field of view (GIFOV). A total 1,900 square kilometers were collected. This data release provides flight line data for the survey and a report describing the dataset and procedures.
Measurements of reference materials were made on the Corescan© HCI-III to evaluate the supplied channel wavelength positions and bandpass values. Wavelength position and bandpass of channels in a spectrometer, referred to as full-width half max (FWHM) in the contractor's documentation (Corescan_Product_MetaData_v3.pdf), are two fundamental spectral characteristics that need to be known in order to spectrally identify minerals by comparison to a spectral library, like the Material Identification and Characterization Algorithm (MICA) analysis used to generate the mineral predominance maps. Spectrometers with finer bandpass can reveal greater spectral detail that can be related to a material’s chemical composition...
Corescan© Hyperspectral Core Imager Mark III (HCI-III) system data were acquired for hand samples, and subsequent billets made from the hand samples, collected during the U.S. Geological Survey (USGS) 2014, 2015, and 2016 field seasons in the Nabesna area of the eastern Alaska Range. This area contains exposed porphyry deposits and hand samples were collected throughout the region in support of the HyMap imaging spectrometer survey (https://doi.org/10.5066/F7DN435W) (Kokaly and others, 2017a). The HCI-III system consists of three different components. The first is an imaging spectrometer which collects reflectance data with a spatial resolution of approximately 500 nanometers (nm) for 514 spectral channels covering...
HTMLmetadata Text files in HTML-format containing metadata about samples and spectra. Also included in the zip file are folders containing information linked to from the HTML files, including: README: contains a HTML version of the USGS Data Series publication, linked to this data release, that describes this spectral library (Kokaly and others, 2017). The folder also contains an HTML version of the release notes. photo_images: contains full resolution images of photos of samples and field sites. photo_thumbs: contains low-resolution thumbnail versions of photos of samples and field sites. GENERAL LIBRARY DESCRIPTION This data release provides the U.S. Geological Survey (USGS) Spectral Library Version 7 and...
|
![]() |