Filters: Tags: hydrologic processes (X)
111 results (81ms)
Filters
Date Range
Extensions Types
Contacts
Categories Tag Types
|
This file (wymt_ffa_2018D_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
The U.S. Geological Survey (USGS), at the request of the U.S. Army Environmental Command (USAEC), evaluated the capabilities of two borehole technologies to measure horizontal groundwater velocity and direction of flow in a parallel-plate fractured-rock simulator. A colloidal borescope flowmeter (HB) and a heat-pulse flowmeter (HH) were deployed in 4-inch and 6-inch inner-diameter simulated uncased wells that spanned 0.39- and 1.0-inch apertures with simulated groundwater velocities ranging from 2 to 958 feet per day. Measurements were made at the USGS Hydrologic Instrumentation Facility in the Hydraulics Laboratory and the Indianapolis office of the USGS Ohio-Kentucky-Indiana Water Science Center. Ten measurements...
This part of the Data Release contains the raster representation of the water-level altitude and water-level change maps developed every 5 years from 1980-2015 for the upper Rio Grande Focus Area Study. The input point data used to generate the water-level altitude maps can be found in the "Groundwater level measurement data used to develop water-level altitude maps in the upper Rio Grande Alluvial Basins" child item of this data release. These digital data accompany Houston, N.A., Thomas, J.V., Foster, L.K., Pedraza, D.E., and Welborn, T.L., 2020, Hydrogeologic framework, groundwater-level altitudes, groundwater-level changes, and groundwater-storage changes in selected alluvial basins of the upper Rio Grande...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Abiquiu Reservoir,
Ahumada,
Alamosa,
Alamosa County,
Alamosa Creek,
We apply a monthly water-balance model (MWBM) to simulate components of the water balance for the period 1950-2099 under RCP4.5 and RCP8.5 for the Contiguous United States. We use the statistically downscaled MACAv2-METDATA temperature and precipitation data from 20 General Circulation Models (GCMs) from the Climate Model Intercomparison Program Phase 5 (CMIP5) as input to the water balance model. This dataset supports the USGS National Climate Change Viewer. The statistically downscaled dataset is: MACAv2-METDATA: Multivariate Adaptive Constructed Analogs (Abatzoglou & Brown, 2012, bias corrected by METDATA, Abatzoglou, 2013) Users interested in the downscaled temperature and precipitation files are referred to...
This dataset is part of the National Water Census ongoing development of best estimates of daily historical water budgets for over 100,000 hydrologic units across the United States. In this release, estimates of total flow and snowmelt for each hydrologic unit are added to the already released estimates of actual evapotranspiration, snowpack water-equivalent storage, soil moisture, recharge, streamflow, and precipitation. All these estimates are made available per twelve-digit hydrologic unit code watershed as contained in the NHDPlus v2.1 dataset and associated Watershed Boundary Dataset (WBD) snapshot. As this project progresses, it is expected that a complete closed water budget generated from the same water...
This file (wymt_ffa_2021B_WATSTORE.txt) contains peak-flow input data for PeakFQ for peak-flow frequency analyses for selected streamgages based on data through water year 2021. The file format is called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Bighorn,
Bighorn County,
Land,
Little Bighorn,
Lower Bighorn,
Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Borehole nuclear magnetic resonance (NMR) data were collected at two sites in order to determine liquid water content at depth in shallow boreholes. NMR data were collected in a 2.25 m-deep borehole at the North Star golf course adjacent to one of the ERT profiles, and in another two 1.625 m-deep boreholes adjacent to Big Trail Lake where previous NMR measurements were made in 2019 and 2020.
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Active layer thickness,
Alaska,
Bonanza Creek,
Borehole nuclear magnetic resonance,
Disturbance,
A monthly water-balance model (MWBM) is applied to simulate components of the water balance for the period 1950-2100 under ssp245, ssp370, and ssp585 scenarios for the Contiguous United States. The statistically downscaled LOCA2 temperature and precipitation projections from 27 GCMs from the Climate Model Intercomparison Program Phase 6 (CMIP6) are use as input to the water balance model. This data set supports the USGS National Climate Change Viewer (ver. 2). The statistically downscaled data set is: CMIP6-LOCA2: Localized Constructed Analogs (Pierce et al. 2023, bias corrected by a modified version of Livneh et al. 2013) Users interested in the downscaled temperature and precipitation files are referred to the...
Electrical resistivity tomography (ERT) measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in September 2019 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. First, ERT data were collected at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify permafrost characteristics beneath the lake and across its shorelines. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity produced from these data revealed...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Active layer thickness,
Alaska,
Big Trail Lake,
Bonanza Creek Experimental Forest,
Disturbance,
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Hydrology,
Land,
Milk River,
Milk River Basin,
Montana,
Parameter values for the Precipitation Runoff Modeling System (PRMS) using the National Hydrologic Modeling (NHM) infrastructure. The contents of the attached zip folder are a direct download from the USGS bitbucket repository titled National Hydrologic Model Parameter Database (NhmParamDb) (https://my.usgs.gov/bitbucket/projects/MOWS/repos/nhmparamdb/browse). The NhmParamDb is stored using a Git version control system, which tracks modifications to the master dataset through 'commits'. Each commit has a unique code to allow for retroactive identification of any given component of the repository. The specific attributes of the download contained in this release are: Date: May 8, 2017 Commit: 6ccc41d5688 Filename:...
This file (wymt_ffa_2021A.psf) contains specifications to run PeakFQ for peak-flow frequency analyses for selected streamgages based on data through water year 2021.
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Bighorn,
Bighorn County,
Dawson County,
Land,
Little Bighorn,
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, that were based on methods described by Sando and McCarthy (2018). Citation: Sando, S.K., and McCarthy, P.M.,...
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Bighorn,
Bighorn County,
Dawson County,
Hydrology,
Land,
Electrical resistivity tomography (ERT) surveys were done northwest of the Air Force Research Laboratory (AFRL) at Edwards Air Force Base. ERT surveys were done at four locations in May through June of 2018 to refine the understanding of the bedrock-alluvial aquifer transition zone downgradient from the AFRL. The ERT technique injects direct-current electricity with known voltage and current into the earth using a series of electrodes and measures the resulting resistivity. This technique is generally limited to investigations of aquifer properties less than 100 meters below land surface. Data from other geophysical techniques co-located with the ERT data, including time-domain electromagnetics and horizontal-to-vertical...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service,
Shapefile;
Tags: Antelope-Fremont Valleys,
Boron,
California,
California Water Science Center,
Edwards Air Force Base,
The Air Force Research Laboratory (AFRL) is about 7 kilometers southwest of Boron, California, and covers 320 square kilometers of Edwards Air Force Base. The AFRL consists of 12 facilities for testing full-size rocket engines, engine components, and liquid and solid propellants. The historical release of contaminants from rocket test stands, evaporation ponds, burn pits, catch basins, and leaking waste-collection tanks has contaminated groundwater in the AFRL. Groundwater aquifers near the AFRL are mostly restricted to fractured granitic bedrock, but previous studies indicate that groundwater and associated contaminants have moved into alluvium to the north and northwest. The U.S. Geological Survey (USGS) and the...
We apply a monthly water-balance model (MWBM) to simulate components of the water balance for the period 1950-2099 under RCP4.5 and RCP8.5 for the Contiguous United States. We use the statistically downscaled MACAv2-METDATA temperature and precipitation data from 20 General Circulation Models (GCMs) from the Climate Model Intercomparison Program Phase 5 (CMIP5) as input to the water balance model. This dataset supports the USGS National Climate Change Viewer. The statistically downscaled dataset is: MACAv2-METDATA: Multivariate Adaptive Constructed Analogs (Abatzoglou & Brown, 2012, bias corrected by METDATA, Abatzoglou, 2013) Users interested in the downscaled temperature and precipitation files are referred to...
We apply a monthly water-balance model (MWBM) to simulate components of the water balance for the period 1950-2099 under RCP4.5 and RCP8.5 for the Contiguous United States. We use the statistically downscaled MACAv2-METDATA temperature and precipitation data from 20 General Circulation Models (GCMs) from the Climate Model Intercomparison Program Phase 5 (CMIP5) as input to the water balance model. This dataset supports the USGS National Climate Change Viewer. The statistically downscaled dataset is: MACAv2-METDATA: Multivariate Adaptive Constructed Analogs (Abatzoglou & Brown, 2012, bias corrected by METDATA, Abatzoglou, 2013) Users interested in the downscaled temperature and precipitation files are referred to...
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Hydrology,
Land,
Milk River,
Milk River Headwaters,
Montana,
A monthly water-balance model (MWBM) is applied to simulate components of the water balance for the period 1950-2100 under ssp245, ssp370, and ssp585 scenarios for the Contiguous United States. The statistically downscaled LOCA2 temperature and precipitation projections from 27 GCMs from the Climate Model Intercomparison Program Phase 6 (CMIP6) are use as input to the water balance model. This data set supports the USGS National Climate Change Viewer (ver. 2). The statistically downscaled data set is: CMIP6-LOCA2: Localized Constructed Analogs (Pierce et al. 2023, bias corrected by a modified version of Livneh et al. 2013) Users interested in the downscaled temperature and precipitation files are referred to the...
This data release contains six zipped raster files of aerial thermal infrared (TIR) images of the South Loup River, North Loup River, and Dismal River named as LowerSouthLoup_AerialTIRImage_1m_2015.zip, MiddleSouthLoup_AerialTIRImage_50cm_2015.zip, UpperSouthLoup_AerialTIRImage_30cm_2015.zip, LowerDismal_AerialTIRImage_1m_2016.zip, UpperDismal_AerialTIRImage_50cm_2015.zip, and NorthLoup_AerialTIRImage_1m_2016.zip. This data release also includes a Reconn_Temperature_Gradient_X_sections.zip file which contains three ASCII comma separated values files with stream reconnaissance data which include stream temperature, streambed temperature, and vertical hydraulic gradient. This dataset also includes a Focused_discharge_points.zip...
|
![]() |