Skip to main content
Advanced Search

Filters: Tags: hazard preparedness (X)

49 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS. The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped into 1-minute increments for easier visualization. The times in...
This file (wymt_ffa_2018D_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
thumbnail
This digital elevation model provides a tool for calibrating tsunami risk to observations of the 1945 Makran tsunami in Karachi Harbour. The DEM bathymetry is derived from soundings made mainly during the first eight years after the tsunami. Although deficient in portraying intertidal backwaters and upland topography, the DEM accurately depicts the sheltered setting of one of the two tide gauges that recorded the 1945 tsunami.
thumbnail
This dataset contains raster grids of water surface elevation for 15 modeled water-surface profiles at 5 flood frequencies (50- , 10,- 2- , 1- , and 0.2-percent annual exceedance probabilities, or 2- , 10- , 50- , 100- , and 500-year recurrence intervals) and 3 lake levels (representing average conditions, a 2-year-high condition, and a 100-year-high condition).
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS. The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped into 1-minute increments for easier visualization. The times in...
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS. The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped into 1-minute increments for easier visualization. The times in...
thumbnail
Digital flood-inundation maps for a 2.9-square-mile area of Ithaca, New York, were created in 2015–18 by the U.S. Geological Survey in cooperation with the City of Ithaca, New York, and the New York State Department of State. The flood-inundation maps depict estimates of the maximum areal extent and depth of flooding corresponding to selected flood frequencies for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek and selected water-surface elevations of Cayuga Lake. Flood profiles for the stream reaches were computed by combining a one-dimensional step-backwater model for the stream channels and a two-dimensional model for the overbank areas. The resulting hydraulic model was calibrated by using water-surface...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, that were based on methods described by Sando and McCarthy (2018). Citation: Sando, S.K., and McCarthy, P.M.,...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
The travel time map was generated using the Pedestrian Evacuation Analyst model from the USGS. The travel time analysis uses ESRI's Path Distance tool to find the shortest distance across a cost surface from any point in the hazard zone to a safe zone. This cost analysis considers the direction of movement and assigns a higher cost to steeper slopes, based on a table contained within the model. The analysis also adds in the energy costs of crossing different types of land cover, assuming that less energy is expended walking along a road than walking across a sandy beach. To produce the time map, the evacuation surface output from the model is grouped into 1-minute increments for easier visualization. The times in...
This data release presents a peak-flow frequency analysis (Eash and others, 2013) for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa. These methods are used to provide estimates of peak-flow quantiles for 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs). Annual peak-flow data used in the peak-flow frequency analysis for this streamgage was retrieved from the U.S. Geological Survey National Water Information System database (U.S. Geological Survey, 2021) and used with USGS flood-frequency analysis software PeakFQ (Veilleux and others, 2014). This data release contains annual peak-flow data (nishnabotna_2020_WATSTORE.txt), PeakFQ specifications...
thumbnail
This dataset represents a summary of potential cropland inundation for the state of California applying high-frequency surface water map composites derived from two satellite remote sensing platforms (Landsat and Moderate Resolution Imaging Spectroradiometer [MODIS]) with high-quality cropland maps generated by the California Department of Water Resources (DWR). Using Google Earth Engine, we examined inundation dynamics in California croplands from 2003 –2020 by intersecting monthly surface water maps (n=216 months) with mapped locations of precipitation amounts, rice, field, truck (which comprises truck, nursery, and berry crops), deciduous (deciduous fruits and nuts), citrus (citrus and subtropical), vineyards,...
thumbnail
Flood profiles for the stream reaches were computed by combining a one-dimensional step-backwater model for the stream channels and a two-dimensional model for the overbank areas. The resulting hydraulic model was calibrated by using water-surface profiles from five observed storm events. The model was then used to compute 15 water-surface profiles for 5 flood frequencies (50- , 10- , 2- , 1- , and 0.2-percent annual exceedance probabilities, or 2- , 10- , 50- , 100- , and 500-year recurrence intervals) and 3 lake levels (representing average conditions, a 2-year-high condition, and a 100-year-high condition). The geographic information system flood-extent polygons, depth grids, and water surface elevation grids...
This file (wymt_ffa_2018C_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
thumbnail
The U.S. Geological Survey South Atlantic Water Science Center, in cooperation with the South Carolina Department of Transportation, implemented a South Carolina StreamStats application in 2018. This shapefile dataset contains vector lines representing streams, rivers, and ditches that were used in preparing the underlying data for the South Carolina StreamStats application. Data were compiled from multiple sources, but principally represent lidar-derived linework from the South Carolina Department of Natural Resources and the South Carolina Lidar Consortium.The South Carolina hydrography lines were created from elevation rasters that ranged from 4 to 10 ft resolution, to produce a product of approximately 1:6,000-scale....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Abbeville County, Aiken County, Allendale County, Anderson County, Bamberg County, All tags...


map background search result map search result map Tsunami Evacuation Travel Time Map for Del Norte County, CA, 2010, for Bridges Intact and a Fast Walking Speed Tsunami Evacuation Travel Time Map for Humboldt County, CA, 2010, for Bridges Intact and a Fast Walking Speed Tsunami Evacuation Travel Time Map for Humboldt County, CA, 2010, for Bridges Intact and a Slow Walking Speed Tsunami Evacuation Travel Time Map for Humboldt County, CA, 2010, for Bridges Removed and a Fast Walking Speed Geospatial dataset of flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour Water surface elevation (NAVD 88) for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York HEC-RAS Model for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Stream Lines Used to Produce the South Carolina StreamStats 2018 Release Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Peak-flow frequency analysis for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa, in the Nishnabotna River Basin, Iowa, based on data through water year 2020 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 County-level maps of cropland surface water inundation measured from Landsat and MODIS HEC-RAS Model for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Water surface elevation (NAVD 88) for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Geospatial dataset of flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Bathymetric and topographic grid intended for simulations of the 1945 Makran tsunami in Karachi Harbour PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. Peak-flow frequency analysis for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa, in the Nishnabotna River Basin, Iowa, based on data through water year 2020 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Stream Lines Used to Produce the South Carolina StreamStats 2018 Release County-level maps of cropland surface water inundation measured from Landsat and MODIS