Skip to main content
Advanced Search

Filters: Tags: habitat connectivity (X)

39 results (37ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data set contains links that are important to each species' habitat network. Those important links are scored based on the percent currently under protection status, projected change in climate suitability by the middle of the 21st century, and projected change in percent urbanized by the middle of the 21st century. Important links were identified from all links in the networks of each species based on their Integral Index of Connectivity (dIIC). Any links with dIIC scores > 0.9 or which connected to nodes with dIIC > 0.9 were retained here as "important" links.
thumbnail
wy_lvl7_coarsescale: Wyoming hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl2_finescale: Wyoming hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
The delineation of priority areas in western North America for managing Greater Sage-Grouse (Centrocercus urophasianus) represents a broad-scale experiment in conservation biology. The strategy of limiting spatial disturbance and focusing conservation actions within delineated areas may benefit the greatest proportion of Greater Sage-Grouse. However, land use under normal restrictions outside priority areas potentially limits dispersal and gene flow, which can isolate priority areas and lead to spatially disjunct populations. We used graph theory, representing priority areas as spatially distributed nodes interconnected by movement corridors, to understand the capacity of priority areas to function as connected...
thumbnail
nv_lvl6_coarsescale: Nevada hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl8_coarsescale: Wyoming hierarchical cluster level 8 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different population growth rates among smaller clusters. Equally so, the spatial structure and ecological...
thumbnail
wy_lvl5_coarsescale: Wyoming hierarchical cluster level 5 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl4_moderatescale: Wyoming hierarchical cluster level 4 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result...
thumbnail
wy_lvl1_finescale: Wyoming hierarchical cluster level 1 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
We will translate existing modeled hydroclimatic data into metrics used for water crossing design and replacement. WDFW permits (Hydraulic Code Rules, Chapter 220-110 WAC) and provides technical guidance for construction of hundreds of fish passable culverts, a number which is expected to rise dramatically in response to a 2013 federal court injunction directing the state to repair thousands of culverts that inhibit salmon migration. Current WDFW design guidance does not account for changes in hydrology resulting from climate change. This project will support the development of designs that maintain desired performance (e.g. connectivity benefits to aquatic organisms) throughout water crossings expected life.This...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, Academics & scientific researchers, Anadromous fish, Applications and Tools, Climate Change, All tags...
WildLinks 2012 brought together transboundary scientists and managers to build on transboundary discussions started during Wildlinks 2010 and 2011 related to climate adaptation for species and habitats on both sides of the border.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Adaptation planning, B.C. North Cascades, B.C. North Cascades, B.C. North Cascades, All tags...
thumbnail
The U.S. Geological Survey (USGS) Data at Risk (DaR) team partnered with the Forest and Rangeland Ecosystem Science Center (FRESC) to preserve and release a subset of their golden eagle telemetry data. In the 1990’s, researchers from what is now FRESC worked with Boise State University (BSU) and collected telemetry and ground observation data that documented the local and migratory movements and behaviors of golden eagles. Over the course of this study 21 golden eagles in the conterminous western US were captured and marked with Argos platform terminal transmitters (PTTs) and tracked by satellite as they moved between breeding and wintering locations (individuals marked with Argos PTTs and tracked by satellite are...
thumbnail
nv_lvl7_coarsescale: Nevada hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
nv_lvl2_finescale: Nevada hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl6_coarsescale: Wyoming hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
Conclusions: Grizzly bears avoid high volume roads (25,000 vehicles/day). High quality habitat determines movement decisions relative to roads. Grizzly bears will cross high volume roads to access high-quality habitat. Grizzly bears use areas close to roads more than expected, in particular low-volume roads (10,000 vehicles/day). Prevent loss of habitat connectivity with the following mitigation: maintain high-quality habitat adjacent to roads, install continuous highway fencing and create wildlife passages. Thresholds/Learnings: Synopsis: The study examined the relationships among grizzly bears, their habitats and roads in Banff National Park, a protected area characterized by a major transportation corridor. This...
thumbnail
wy_lvl9_coarsescale: Wyoming hierarchical cluster level 9 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
The Washington Connected Landscapes Project is a highly leveraged effort to provide scientific analyses and tools necessary to conserve wildlife habitat connectivity. In support of the project, we 1) developed tools necessary to reliably identify and prioritize areas important for connectivity conservation and restoration under current conditions and for allowing species range shifts under climate change; 2) tested and refined these tools by applying them in a Great Northern LCC (GNLCC)-funded effort to identify essential habitats and linkages for the Columbia Plateau Ecoregion where the WHCWG is currently engaged (connectivity and climate tools) and across Washington State (climate tools); and 3) released these...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2011, Academics & scientific researchers, Applications and Tools, Change in air temperature and precipitation, Conservation NGOs, All tags...
thumbnail
The satellite data consist of 9,253 estimated locations of 21 golden eagles (Aquila chrysaetos) that were satellite-tagged in either east-central Idaho (Salmon, Idaho) or southwestern Idaho (Snake River National Conservation Area) and tracked between 1993 and 1997 via the Argos satellite system. The raw eagle tracking data provided by Argos were filtered one time using a version of the Douglas Argos-Filter Algorithm and converted into XLS spreadsheet form. This preservation project preserved the geospatial and satellite information from the XLS spreadsheet and released it in shapefile format (Satellite_Data.shp) and CSV format (Satellite_Data.csv). Each tagged bird in this dataset has a unique PTT number that is...


map background search result map search result map The Washington Connected Landscapes Project:  Providing Analysis Tools for Regional Connectivity and Climate Adaptation Planning Relationships among grizzly bears, highways, and habitat in Banff-Bow Valley, Alberta, Canada. An Applied Case Study to Integrate Climate Change into Design and Permitting of Water Crossing Structures 2012 Wildlinks Conference Raster digital data sets identifying a range-wide network of priority areas for greater sage-grouse Important links for Black bear, Rafinesque's big-eared bat, and timber rattlesnake Golden Eagle (Aquila chrysaetos) Satellite Telemetry and Observational Data, Western North America, 1993-1997 Satellite Data, Golden Eagles (Aquila chrysaetos), Western North America, 1993-1997 Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 9 (Wyoming), Interim The Washington Connected Landscapes Project:  Providing Analysis Tools for Regional Connectivity and Climate Adaptation Planning An Applied Case Study to Integrate Climate Change into Design and Permitting of Water Crossing Structures Relationships among grizzly bears, highways, and habitat in Banff-Bow Valley, Alberta, Canada. 2012 Wildlinks Conference Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 9 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Nevada and Wyoming, Interim Important links for Black bear, Rafinesque's big-eared bat, and timber rattlesnake Raster digital data sets identifying a range-wide network of priority areas for greater sage-grouse Satellite Data, Golden Eagles (Aquila chrysaetos), Western North America, 1993-1997 Golden Eagle (Aquila chrysaetos) Satellite Telemetry and Observational Data, Western North America, 1993-1997