Skip to main content
Advanced Search

Filters: Tags: geoscientificInformation (X) > Extensions: Raster (X)

329 results (278ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Airborne magnetic gradiometry data are provided here as part of the data release, "Airborne magnetic and radiometric survey, Charleston, South Carolina and surrounds, 2019." This data release includes the processed aeromagnetic horizontal gradiometry flight line data provided in an ascii .csv file and a geoTIFF image showing the magnetic intensity in nanoTeslas (nT). The contractor report and deliverables package are available on the parent page, https://doi.org/10.5066/P9EWQ08L. These data were collected as part of a high-resolution airborne magnetic and radiometric survey over Charleston, South Carolina and the surrounding region with a goal of better understanding earthquake hazards in the Charleston seismic...
thumbnail
This data release includes estimates of potassium (K), equivalent uranium (eU), and equivalent thorium (eTh) for the conterminous United States derived from the U.S. Geological Survey's national airborne radiometric data compilation (Duval and others, 2005). Airborne gamma ray spectrometry (AGRS) measures the gamma-rays that are emitted from naturally occurring radioactive isotopes found in rocks and soil, the most abundant of which are potassium (K40), uranium (U238), and thorium (Th232). Radiometric data can aid in exploration of critical mineral resources, including deposits of barium, fluorine, titanium, beryllium, niobium, rare-earth elements, and uranium. There is also growing interest in using radiometric...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Alabama, Arizona, Arkansas, California, Colorado, All tags...
thumbnail
This part of DS 781 presents 2-m-resolution data collected by the U.S. Geological Survey in 2008 for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[USGS08]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. The acoustic-backscatter map of the Offshore of Gaviota map area in southern California was generated from acoustic-backscatter data collected by the U.S. Geological Survey (USGS) and by Fugro Pelagos Inc. Acoustic mapping was completed between 2007 and 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders, as well as a 234-kHz SEA SWATHplus bathymetric...
thumbnail
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterB_7125_OffshorePigeonPoint.zip," which is accessible from http://dx.doi.org/10.5066/F7513W80.The acoustic-backscatter map of the Offshore of Pigeon Point, California was generated from backscatter data collected by California State University, Monterey Bay (CSUMB), by Fugro Pelagos, and by the U.S. Geological Survey (USGS). Mapping was completed between 2006 and 2009, using a combination of 400-kHz Reson 7125 and 244-kHz Reson 8101 multibeam echosounders, as well as...
thumbnail
Seafloor character was derived from interpretations of air photo derived kelp distribution data available for the Santa Cruz Island (Kushner and others 2013). The number of substrate classes was reduced because rugosity could not be derived for all areas. References Cited: Kushner DJ, Rassweiler A, McLaughlin JP, Lafferty KD (2013) A multi-decade time series of kelp forest community structure at the California channel islands: Ecology 94:2655.
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...


map background search result map search result map BackscatterB [7125]--Offshore Pigeon Point, California Air-photo seafloor character Santa Barbara Channel Geohab Backscatter [USGS08]--Offshore of Gaviota Map Area, California Precipitation (Mean: Annual) - 2020-2050 - RCP8.5 - Mean Precipitation (Mean: Annual) - 2020-2050 - RCP8.5 - Min Precipitation (Proportion July - Sep) - 1980-2010 Precipitation (Proportion July - Sep) - 2070-2100 - RCP4.5 - Max Precipitation (Proportion July - Sep) - 2020-2050 - RCP8.5 - Max Temperature (Mean: Annual) - 2070-2100 - RCP8.5 - Mean Temperature (Mean: Annual) - 2020-2050 - RCP8.5 - Mean Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Mean Precipitation (Proportion May - Oct) - 2070-2100 - RCP8.5 - Max Precipitation (Mean: July - Sep) - 2070-2100 - RCP4.5 - Mean Temperature (Maximum: July) - 2070-2100 - RCP8.5 - Mean Temperature (Mean: Apr - June) - 2070-2100 - RCP4.5 - Max Temperature (Mean: July - Sep) - 2070-2100 - RCP4.5 - Max Temperature (Minimum: January) - 2020-2050 - RCP4.5 - Mean Temperature (Minimum: January) - 2020-2050 - RCP8.5 - Max Bayesian modeling of NURE airborne radiometric data for the conterminous United States: predictions and grids Airborne magnetic flight line data, Charleston, South Carolina and surrounds, 2019 BackscatterB [7125]--Offshore Pigeon Point, California Airborne magnetic flight line data, Charleston, South Carolina and surrounds, 2019 Precipitation (Mean: Annual) - 2020-2050 - RCP8.5 - Mean Precipitation (Mean: Annual) - 2020-2050 - RCP8.5 - Min Precipitation (Proportion July - Sep) - 1980-2010 Precipitation (Proportion July - Sep) - 2070-2100 - RCP4.5 - Max Precipitation (Proportion July - Sep) - 2020-2050 - RCP8.5 - Max Temperature (Mean: Annual) - 2070-2100 - RCP8.5 - Mean Temperature (Mean: Annual) - 2020-2050 - RCP8.5 - Mean Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Mean Precipitation (Proportion May - Oct) - 2070-2100 - RCP8.5 - Max Precipitation (Mean: July - Sep) - 2070-2100 - RCP4.5 - Mean Temperature (Maximum: July) - 2070-2100 - RCP8.5 - Mean Temperature (Mean: Apr - June) - 2070-2100 - RCP4.5 - Max Temperature (Mean: July - Sep) - 2070-2100 - RCP4.5 - Max Temperature (Minimum: January) - 2020-2050 - RCP4.5 - Mean Temperature (Minimum: January) - 2020-2050 - RCP8.5 - Max Bayesian modeling of NURE airborne radiometric data for the conterminous United States: predictions and grids