Skip to main content
Advanced Search

Filters: Tags: fog interception (X)

10 results (51ms)   

View Results as: JSON ATOM CSV
thumbnail
These shapefiles represent the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a set of eight future climate and land-cover scenarios. The future climate conditions used in the water-budget analyses were derived from two end-of-century downscaled climate projections including (1) a projected future climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate described in Zhang and others (2016a, 2016b) and (2) a projected future climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2080-99 scenario...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 3 of the Coupled Model Intercomparison Project (CMIP3) A1B 2080-99 scenario climate and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea (or polygon) present an estimate of mean...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for a projected climate condition representative of phase 5 of the Coupled Model Intercomparison Project (CMIP5) Representative Concentration Pathway 8.5 (RCP8.5) 2071-99 scenario rainfall and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for the future climate condition using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of average climate conditions (1978–2007 rainfall) and 2010 land cover, as described in USGS SIR 2014-5168. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception, irrigation, reference evapotranspiration, direct runoff,...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Kauai, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of recent conditions (1978–2007 rainfall and 2010 land cover), as described in USGS Scientific Investigations Report (SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea data set, consisting of 400,714 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets. Spatial datasets merged include those that characterize...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of predevelopment conditions (1978–2007 rainfall and 1870 land cover), as described in USGS Scientific Investigations Report (USGS SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 441,315 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include those...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of current conditions (2001-10 rainfall and 2001-10 land cover), as described in USGS Scientific Investigations Report (USGS SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 395,955 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include those that characterize...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Kauai, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of current conditions (2001-10 rainfall and 2001-10 land cover), as described in U.S. Geological Survey Scientific Investigations Report (USGS SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 400,714 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui, Hawaii for an average (or present-day) climate condition and 2017 land cover, as described in USGS SIR 2019-5064. The water-budget components for each model subarea were computed for a scenario representative of present-day climate conditions during 1978-2007 using a water-budget model developed by Johnson and others (2018). The 2017 land-cover map developed by Mair (2018) was used to define the land-cover conditions and the model subareas. The shapefile attribute information associated with each subarea (or polygon) present an estimate of mean annual rainfall, fog interception, irrigation,...
thumbnail
This shapefile represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Kauai, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of predevelopment conditions (1978–2007 rainfall and 1870 land cover), as described in USGS Scientific Investigations Report (SIR) 2015-5164. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model-subarea dataset, consisting of 400,714 subareas (polygons), was generated using Esri ArcGIS software by intersecting (merging) multiple spatial datasets. Spatial datasets merged include those that...


    map background search result map search result map Mean annual water-budget components for the Island of Maui, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for predevelopment conditions, 1978-2007 rainfall and 1870 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for predevelopment conditions, 1978-2007 rainfall and 1870 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for recent conditions, 1978-2007 rainfall and 2010 land cover (ver. 2.0) Mean annual water-budget components for the Island of Maui, Hawaii, for average climate conditions, 1978-2007 rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP3 A1B 2080-99 scenario climate and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP5 RCP8.5 2071-99 scenario rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for a set of eight future climate and land-cover scenarios Mean annual water-budget components for the Island of Kauai, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for predevelopment conditions, 1978-2007 rainfall and 1870 land cover (ver. 2.0) Mean annual water-budget components for the Island of Kauai, Hawaii, for recent conditions, 1978-2007 rainfall and 2010 land cover (ver. 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for current conditions, 2001-10 rainfall and 2001-10 land cover (ver. 2.0) Mean annual water-budget components for the Island of Oahu, Hawaii, for predevelopment conditions, 1978-2007 rainfall and 1870 land cover (ver. 2.0) Mean annual water-budget components for the Island of Maui, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0) Mean annual water-budget components for the Island of Maui, Hawaii, for average climate conditions, 1978-2007 rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP3 A1B 2080-99 scenario climate and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for projected climate conditions, CMIP5 RCP8.5 2071-99 scenario rainfall and 2017 land cover Mean annual water-budget components for the Island of Maui, Hawaii, for a set of eight future climate and land-cover scenarios