Skip to main content
Advanced Search

Filters: Tags: ecological thresholds (X)

8 results (7ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
MethodsStudy area: Our initial study area included the entire globe. We began with a seamless grid of cells with a resolution of 0.5 degrees (i.e., ~50 km at the equator). Next, we created polylines representing coastlines using SRTM (Shuttle Radar Topographic Mission) v4.1 global digital elevation model data at a resolution of 250 m (Reuter et al. 2007). We used these coastline polylines to identify and retain cells that intersected the coast. We excluded 192,227 cells that did not intersect the coast. To avoid cells with minimal potential coastal wetland habitat, we used the coastline data to remove an additional 1,056 coastal cells that contained less than or equal to 5% coverage of land. We also removed 176...
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...
Citation: Esselman, P., D. Infante, L. Wang, A. Cooper, D. Wieferich, Y. Tsang, D. Thornbrugh, W. Taylor. 2013. Regional fish community indicators of landscape disturbance to catchments of the conterminous United States. Ecological Indicators 26:163-173. Abstract: Biological assessments of river conditions are increasingly conducted at regional and continental scales that match the extent of large-scale river management efforts. Multimetric indices composed of biological community indicators are commonly used to assess ecological condition and indices have recently been applied in large regions. Methods for large-scale multimetric index creation emphasize repeatability, comparability across regions, and objective...
ABSTRACT: Data from long-term ecosystem monitoring and research stations in North America and results of simulations made with interpretive models indicate that changes in climate (precipitation and temperature) can have a significant effect on the quality of surface waters. Changes in water quality during storms, snowmelt, and periods of elevated air temperature or drought can cause conditions that exceed thresholds of ecosystem tolerance and, thus, lead to water-quality degradation. If warming and changes in available moisture occur, water-quality changes will likely first occur during episodes of climate-induced stress, and in ecosystems where the factors controlling water quality are sensitive to climate variability....
thumbnail
Climatic extremes are becoming more frequent with climate change and have the potential to cause major ecological shifts and ecosystem collapse. Along the northern Gulf of Mexico, a coastal wetland in the San Bernard National Wildlife Refuge in Texas suffered significant and acute vegetation dieback following Hurricane Harvey in 2017. We identified plant zonal boundaries along an elevation gradient with drought-tolerant plant species, including succulents and graminoids, at higher elevations and flood-tolerant species, including Spartina alterniflora, at lower elevations. We measured mean canopy height for each species. Soil surface elevation was measured using Real-Time Kinematic (RTK) methods.
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...
The northern Gulf of Mexico coast spans a dramatic water availability gradient (precipitation range: 700 to 1800 mm/year) and represents an excellent natural laboratory for developing climate-influenced ecological models for natural resource managers and culture keepers. In this project, we used this zone of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective...


    map background search result map search result map Climatic controls on the global distribution, abundance, and species richness of mangrove forests Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands Cell data Point data Coastal wetland vegetation and elevation data characterizing a Sudden Vegetation Dieback event in San Bernard National Wildlife Refuge in 2019 Coastal wetland vegetation and elevation data characterizing a Sudden Vegetation Dieback event in San Bernard National Wildlife Refuge in 2019 Point data Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands Cell data Climatic controls on the global distribution, abundance, and species richness of mangrove forests