Skip to main content
Advanced Search

Filters: Tags: dynamical downscaling (X) > Extensions: Citation (X)

4 results (9ms)   

View Results as: JSON ATOM CSV
Projections of regional climate, net basin supply (NBS), and water levels are developed for the mid- and late twenty-first century across the Laurentian Great Lakes basin. Two state-of-the-art global climate models (GCMs) are dynamically downscaled using a regional climate model (RCM) interactively coupled to a one-dimensional lake model, and then a hydrologic routing model is forced with time series of perturbed NBS. The dynamical downscaling and coupling with a lake model to represent the Great Lakes create added value beyond the parent GCM in terms of simulated seasonal cycles of temperature, precipitation, and surface fluxes. However, limitations related to this rudimentary treatment of the Great Lakes result...
Hawaii’s high and steep topography leads to pronounced small-scale variations in climate, and this makes comprehensive modeling of the weather and climate particularly challenging. This paper describes a regional model formulation designed for simulations of the microclimates in Hawaii and then documents and analyzes an extended retrospective simulation for near-present-day conditions. Part II will apply the model to projected climate conditions near the end of the present century. A nested version of the Advanced Research version of the Weather Research and Forecasting Model with fine horizontal resolution and improved physics for the Hawaiian region has been configured. A 20-yr triply nested simulation of the...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2016JD024796/abstract): A significant challenge with dynamical downscaling of climate simulations is the ability to accurately represent convection and precipitation. The use of convection-permitting resolutions avoids cumulus parameterization, which is known to be a large source of uncertainty. A regional climate model (RCM) based on the Weather Research and Forecasting model is configured with a 4 km grid spacing and applied to the U.S. Great Plains, a region characterized by many forms of weather and climate extremes. The 4 km RCM is evaluated by running it in a hindcast mode over the central U.S. region for a 10 year period, forced at the boundary by...
This paper examines the hydrologic model performance in three snowmelt-dominated basins in the western United States to dynamically- and statistically downscaled output from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP). Runoff produced using a distributed hydrologic model is compared using daily precipitation and maximum and minimum temperature timeseries derived from the following sources: (1) NCEP output (horizontal grid spacing of approximately 210 km); (2) dynamically downscaled (DDS) NCEP output using a Regional Climate Model (RegCM2, horizontal grid spacing of approximately 52 km); (3) statistically downscaled (SDS) NCEP output; (4) spatially...