Skip to main content
Advanced Search

Filters: Tags: debris flow (X)

49 results (122ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset shows the potential wood contribution to fish bearing streams for the Western Oregon Plan Revision (WOPR). The potential wood contribution is determnined for all streams over entire channel networks, including wood recruitment processes for channel-adjacent tree fall, mass wasting and channel migration. Model inputs are 10 meter Digital Elevation Models (DEM) and forest cover with detailed forest stand tables specifiying stem density,size and mortality rates for each size class in each stand type.BLM (Bureau of Land Management) WOPR (Western Oregon Plan Revision) PRMP (Proposed Resource Managment Plan) Channel locations and geomorphic attributes extraced using algorithms described in Clarke, S. E.,...
thumbnail
A physiographically prominent, approximately 40 square km plateau lies roughly 20 km east of Mount Spurr volcano, northwestern Cook Inlet region, Alaska, and comprises the preserved remnant of a volcaniclastic succession, designated in this study as map unit Qvc. Although this readily mappable package of volcaniclastic rocks has been recognized in numerous studies during the past five decades, uncertainties regarding its age and origin have persisted. We describe the general characteristics of the volcaniclastic plateau, provide new age constraints for deposits, present lithofacies descriptions and interpretations of the volcaniclastic strata, and synthesize our observations and lithofacies analysis to propose an...
thumbnail
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. The USGS conducts post-fire debris-flow hazard assessments for select fires in the Western U.S. We use geospatial data related to basin morphometry, burn severity, soil properties, and rainfall characteristics to estimate the probability and volume of debris flows that may occur in response to a design storm.
Holocene debris flows do not occur uniformly on the Colorado Plateau province of North America. Debris flows occur in specific areas of the plateau, resulting in general from the combination of steep topography, intense convective precipitation, abundant poorly sorted material not stabilized by vegetation, and the exposure of certain fine-grained bedrock units in cliffs or in colluvium beneath those cliffs. In Grand and Cataract Canyons, fine-grained bedrock that produces debris flows contains primarily single-layer clays—notably illite and kaolinite—and has low multilayer clay content. This clay-mineral suite also occurs in the colluvium that produces debris flows as well as in debris-flow deposits, although unconsolidated...
thumbnail
This publication addresses deep-seated landslide susceptibility,debris flow susceptibility, and other geologic hazards in ruralparts of western San Mateo County. The report also estimatespossible costs of investigating and mitigating the landslidehazards. The study area includes the Half Moon Bay 7.5'quadrangle, the Montara Mountain 7.5' quadrangle, and thePescadero/Butano Creeks watershed. Hazard maps were derived byintegrating slope data and previous geologic, landslide and debrisflow mapping. The digital database, which is found athttp://geopubs.wr.usgs.gov/open-file/of00-127includes 43 plotfiles for slope maps, Digital Orthophoto Quadranglemaps, Digital Raster Graphic topographic base maps, geologic maps,deep-seated...
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
The State of Alaska Division of Geological & Geophysical Surveys (DGGS) produced an orthorectified aerial optical image mosaic (orthoimage) and digital surface model over an area extending from milepost (MP) 17 to approximately MP 24.5 on the Alaska State Highway 7 (Haines Highway) north of Haines along the Chilkat River in southeast Alaska. The aerial photogrammetric survey targeted large debris fans and their alpine source areas on the west side of the Takshanuk Mountains in support of cryosphere hazards mapping and monitoring efforts. Aerial photographs and Global Navigation Satellite System (GNSS) data were collected on May 26, 2014, and were processed using Structure-from-Motion (SfM) photogrammetric techniques...
thumbnail
This data release includes 2014 time-series data from three debris-flow monitoring stations at Chalk Cliffs in Chaffee County, Colorado, USA. The data were collected to help identify the triggering conditions, magnitude, and mobility of debris flows at the site. The three stations are located sequentially along a channel draining the 0.3 km^2 study area. The Upper, Middle, and Lower stations have respective drainage areas of 0.06, 0.16, and 0.24 km^2. The location (UTM zone 13) of each station is: 396826E/4287851N (Upper), 396893E/ 4287815N (Middle), and 396929E/4287712N (Lower). See also “ChalkStationLocations.jpg” in the README.zip file. The 2014 data includes three types of time series: (1) 1-minute time series...
thumbnail
This data release includes time-series data from a monitoring site located in a small (0.12 km2) drainage basin in the Las Lomas watershed in Los Angeles County, CA, USA. The site was established after the 2016 Fish Fire and recorded a series debris flows in the first winter after the fire. The station is located along the channel at the outlet of the study area (34 9’18.50”N, 117 56’41.33”W, WGS84). The data were collected between November 15, 2016 and February 23, 2017. The data include two types of time series: (1) continuous 1-minute time series of rainfall and flow stage recorded by a laser distance meter suspended over the channel (LasLomasContinuous.csv), and (2) 50-Hz time series of flow stage and flow-induced...
Rainfall on 9–13 September 2013 triggered at least 1,138 debris flows in a 3430 km 2 area of the Colorado Front Range. Most flows were triggered in response to two intense rainfall periods, one 12.5-hour-long period on 11–12 September, and one 8-hour-long period on 12 September. Data in this project pertain to an area bounded by N 40.0° – 40.375° and W 105.25° – 105.625° which includes many of the areas where high concentrations of debris flows occurred. These data include a subset of a map of landslide and debris flow scarps (Coe and others, 2014) and raster grids derived from the National Elevation Dataset. These data were used to test a new, parallel implementation of the Transient Rainfall Infiltration and...
On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which...
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity?duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar...
thumbnail
Lidar data were collected on 17 May 2017 at the USGS debris-flow flume (44.215, -122.254) to monitor the movement of a constructed landslide experiment. A static prism of sediment was emplaced behind a retaining wall at the top of the flume. Water was added via sprinklers to the surface and also via pipes to the subsurface, in order to saturate the sediment mass. The sediment mass eventually failed as a debris flow and moved down the flume. Lidar data were collected from a Riegl VZ-400 terrestrial laser scanner to capture the mass failure. The laser scanner was modified, so that rather than scanning in a 360 degree motion, as it is designed, it only scanned a narrow swath (approximately 1 mm) along the full...


map background search result map search result map Possible Costs Associated with Investigating and Mitigating SomeGeologic Hazards in Rural Parts of San Mateo County, California WOPR Woodflow Polygon Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Photogrammetric data of the Haines Highway corridor: May 26, 2014 Geologic context, age constraints, and sedimentology of a Pleistocene volcaniclastic succession near Mount Spurr volcano, south-central Alaska Post-wildfire debris-flow monitoring data, Las Lomas, 2016 Fish Fire, Los Angeles County, California, November 2016 to February 2017 Debris-flow monitoring data, Chalk Cliffs, Colorado, USA, 2014 Lidar data for natural release experiment at the USGS Debris Flow Flume 17 May 2017 Post-wildfire debris-flow monitoring data, Las Lomas, 2016 Fish Fire, Los Angeles County, California, November 2016 to February 2017 Lidar data for natural release experiment at the USGS Debris Flow Flume 17 May 2017 Debris-flow monitoring data, Chalk Cliffs, Colorado, USA, 2014 Geologic context, age constraints, and sedimentology of a Pleistocene volcaniclastic succession near Mount Spurr volcano, south-central Alaska Photogrammetric data of the Haines Highway corridor: May 26, 2014 Possible Costs Associated with Investigating and Mitigating SomeGeologic Hazards in Rural Parts of San Mateo County, California WOPR Woodflow Polygon