Skip to main content
Advanced Search

Filters: Tags: computational methods (X)

62 results (53ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This file (wymt_ffa_2018D_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
thumbnail
The goal of this study was to develop a suite of inter-related water quality monitoring approaches capable of modeling and estimating spatial and temporal gradients of particulate and dissolved total mercury (THg) concentration, and particulate and dissolved methyl mercury (MeHg), concentration, in surface waters across the Sacramento / San Joaquin River Delta (SSJRD). This suite of monitoring approaches included: a) data collection at fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, b) spatial mapping using boat-mounted flow-through sensors, and c) satellite-based remote sensing. The focus of this specific Child Page is to document a series of derived remote sensing products for turbidity...
This dataset presents tabular data and Excel workbooks used to analyze single-well aquifer tests in pumping wells and slug tests in monitoring wells near Long Canyon. The data also include pdf outputs from the analysis program, Aqtesolv (Duffield, 2007). The data are presented in two zipped files, (1) single-well aquifer tests in pumping wells and (2) slug tests in monitoring wells. The slug-test data were supplied by Newmont Mining Corporation and collected by Golder and Associates in 2011. Reference Cited: Duffield, G.M., 2007, AQTESOLV for windows: Version 4.5 User’s Guide, HydroSOLV, Inc. Reston, VA, p. 530, at, http://www.aqtesolv.com/download/aqtw20070719.pdf.
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, that were based on methods described by Sando and McCarthy (2018). Citation: Sando, S.K., and McCarthy, P.M.,...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
This part of DS 781 presents data for the transgressive contours for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The vector file is included in T "TransgressiveContours_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic-reflection data collected in 2009 and 2010 (USGS activities (S-15-10-NC, S-N1-09-MB, and S-06-11-MB) supplemented with outcrop and geologic structure from DS 781. The resulting grid covers was...
thumbnail
This data set contains daily survival rates from 81 studies of passerine obligate grassland bird species that primarily breed in the United States; patch size information was extracted when available. Temperature and precipitation variables were calculated for the study sites and years the data were collected. The studies we used collected data across the period 1978 to 2013.
thumbnail
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Pigeon Point map area, California. The vector data file is included in "Contours_OffshorePigeonPoint.zip", which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., Finlayson, D.P., and Maier, K.L. (G.R. Cochrane and S.A. Cochran, eds.), 2015, California State Waters Map Series—Offshore of Pigeon Point, California: U.S. Geological Survey Open-File...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Ano Nuevo, Bathymetry, CMHRP, Coastal and Marine Hazards and Resources Program, Continental/Island Shelf, All tags...
thumbnail
This USGS data release presents data used to interpret aquifer tests and ultimately characterize the hydraulic properties of carbonate-rock and basin-fill aquifers near Long Canyon, Goshute Valley, northeastern Nevada. The supplemental data consist of 2 child items and 3 attached appendix datasets. The child items are: (1) 2011–2016 Single Well Aquifer Tests: Pumping Schedules, Water-Level Data in Aquifer Test Wells, and Analysis Results from Tests Conducted near Long Canyon, Goshute Valley, Northeastern Nevada, (tabular datasets, pdfs, and Excel workbooks), and (2) 2016 Carbonate-Rock Aquifer Test Data: Pumping Schedules, Water-Levels, Weather Data, Water-Level Models, and Hydrographs showing Drawdown and Rise...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected USGS streamgages. This data release presents peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, based on data through water year 2022, using methods described by Sando and McCarthy (2018).
thumbnail
The U.S. Geological Survey South Atlantic Water Science Center, in cooperation with the South Carolina Department of Transportation, implemented a South Carolina StreamStats application in 2018. This shapefile dataset contains vector lines representing streams, rivers, and ditches that were used in preparing the underlying data for the South Carolina StreamStats application. Data were compiled from multiple sources, but principally represent lidar-derived linework from the South Carolina Department of Natural Resources and the South Carolina Lidar Consortium.The South Carolina hydrography lines were created from elevation rasters that ranged from 4 to 10 ft resolution, to produce a product of approximately 1:6,000-scale....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Abbeville County, Aiken County, Allendale County, Anderson County, Bamberg County, All tags...
This file (wymt_ffa_2018C_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).


map background search result map search result map Contours--Offshore Pigeon Point, California Transgressive Contours--Pigeon Point to Monterey, California Daily Survival Rates of Grassland Passerines and Associated Weather Variables (1978-2013) Stream Lines Used to Produce the South Carolina StreamStats 2018 Release Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 High resolution satellite remote-sensing-based maps of dissolved organic matter and turbidity for the Sacramento-San Joaquin River Delta Appendixes and Supplemental Data: Hydraulic Characterization of Carbonate-Rock and Basin-Fill Aquifers near Long Canyon, Goshute Valley, Northeastern Nevada, 2011-2016 2011–2016 Single Well Aquifer Tests: Pumping Schedules, Water-Level Data in Aquifer Test Wells, and Analysis Results from Tests Conducted near Long Canyon, Goshute Valley, Northeastern Nevada PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Results of peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 Contours--Offshore Pigeon Point, California PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in Carbon County, Montana, based on data through water year 2018. Transgressive Contours--Pigeon Point to Monterey, California High resolution satellite remote-sensing-based maps of dissolved organic matter and turbidity for the Sacramento-San Joaquin River Delta Appendixes and Supplemental Data: Hydraulic Characterization of Carbonate-Rock and Basin-Fill Aquifers near Long Canyon, Goshute Valley, Northeastern Nevada, 2011-2016 2011–2016 Single Well Aquifer Tests: Pumping Schedules, Water-Level Data in Aquifer Test Wells, and Analysis Results from Tests Conducted near Long Canyon, Goshute Valley, Northeastern Nevada WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Results of peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Stream Lines Used to Produce the South Carolina StreamStats 2018 Release Daily Survival Rates of Grassland Passerines and Associated Weather Variables (1978-2013)