Skip to main content
Advanced Search

Filters: Tags: coastal wetlands (X)

66 results (117ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to oligohaline marsh by measuring processes controlling wetland elevation. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems.
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
thumbnail
SLAMM-View is a web browser-based application that provides tools for improved understanding of results from research projects that employ the Sea Level Affecting Marshes Model (SLAMM). Version 2.0 of SLAMM-View was designed for a user-friendly, workflow-based approach to assess impacts of sea-level rise (SLR) on coastal areas with both visualization and analysis functionality. SLAMM-View provides simultaneous comparison between both current and future conditions out to the year 2100, and among different SLR scenarios (e.g., 0.4 meter vs. 1 meter), using interactive maps and tabular reporting capabilities. To date, SLAMM-View provides access to SLAMM simulation results for the entire coastlines of 5 states, and...
thumbnail
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring (SWAMP) program. The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
thumbnail
This U.S. Geological Survey Data Release includes maps of Phragmites australis coverage within the Delta National Wildlife Refuge (NWR), located on the eastern half of the Mississippi River Delta in south Louisiana, for 2011, 2013 and 2016. While the objective of this mapping effort was to map the presence of P. australis, the map also includes coverage of water and non-P.australis land areas (e.g., non-P. australis emergent marsh with scrub/shrub, developed, etc.) and water (e.g., open water, submerged aquatic vegetation, floating aquatic vegetation, and nonpersistent wetlands). This data release also includes maps that show spatial change in P. australis coverage between mapping efforts. This specific dataset...
thumbnail
Water levels in meters from four wells in Moneystump marsh at Blackwater National Wildlife Refuge, MD. Two wells are located in the upland forest; one well is located in the marsh-forest transition zone (ecotone); and one well is located in the marsh. Water depth of the adjacent creek is reported in meters. Data covers the time span from November 11 2016 - November 11 2017. Pressure transducer data from the wells corrected to water level using barometric pressure loggers located in 3 locations throughout the experiment. Water levels are in units of meters referenced to vertical datum NAVD88. Raw pressure data is in units of kilopascals (kPa). Pressure transducer locations and elevation data from GNSS and digital...
thumbnail
The Biscayne National Park (BISC) vegetation map was created by Pablo L. Ruiz, Patricia A. Houle, and Michael S. Ross of Florida International University (Cooperative agreement H500 06 5040 Task agreement J2117062272) with the National Park Service South Florida / Caribbean Network conducting the accuracy assessment and assembling the final joint report and deliverables. Biscayne National Park�s 3,096 hectares of terrestrial vegetation, including the wetlands along the western shore of Biscayne Bay, mangrove islands in the bay, and larger islands that parallel the mainland, were mapped with a vector-based approach using photo-interpretation of Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research...
Coastal wetlands provide many valuable benefits to people and wildlife, including critical habitat, improved water quality, reduced flooding impacts, and protected coastlines. However, in the 21st century, accelerated sea-level rise and coastal development are expected to greatly alter coastal landscapes across the globe. The future of coastal wetlands is uncertain, challenging coastal environmental managers to develop conservation strategies that will increase the resilience of these valuable ecosystems to change and preserve the benefits they provide. One strategy for preparing for the effects of sea-level rise is to ensure that there is space available for coastal wetlands to migrate inland. In a recent study,...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...


map background search result map search result map A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Biscayne National Park Vegetation Mapping Project - Spatial Vegetation Data Data_Series_969_Tidal_Saline_Wetland_Migration_2030 Litter quality Environmental data Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Elevation change along a coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in the Southeastern U.S.A. (2009-2014) data Phragmites australis maps and change, Delta National Wildlife Refuge, Louisiana (2011, 2013, 2016) Louisiana Barrier Island Comprehensive Monitoring Program – 2016 habitat map, Late Lafourche Delta Region (ver. 1.1, May 2020) Louisiana Barrier Island Comprehensive Monitoring Program – 2015 habitat map, West Chenier Region (ver. 1.1, May 2020) Louisiana Barrier Island Comprehensive Monitoring Program – 2008-2016 habitat change, Modern Delta Region Louisiana Barrier Island Comprehensive Monitoring Program – 2008 habitat map, East Chenier Region (ver. 1.1, May 2020) Louisiana Barrier Island Comprehensive Monitoring Program – 2008-2016 habitat change, Chandeleur Islands Region Water levels (November 11 2016 through November 11 2017) for four wells and Light intensity data (October 1 2015 through September 2019): from marsh to upland forest, for Moneystump Marsh, Blackwater National Wildlife Refuge, Maryland Water levels (November 11 2016 through November 11 2017) for four wells and Light intensity data (October 1 2015 through September 2019): from marsh to upland forest, for Moneystump Marsh, Blackwater National Wildlife Refuge, Maryland Phragmites australis maps and change, Delta National Wildlife Refuge, Louisiana (2011, 2013, 2016) Biscayne National Park Vegetation Mapping Project - Spatial Vegetation Data Louisiana Barrier Island Comprehensive Monitoring Program – 2008-2016 habitat change, Modern Delta Region Louisiana Barrier Island Comprehensive Monitoring Program – 2015 habitat map, West Chenier Region (ver. 1.1, May 2020) Louisiana Barrier Island Comprehensive Monitoring Program – 2008 habitat map, East Chenier Region (ver. 1.1, May 2020) Louisiana Barrier Island Comprehensive Monitoring Program – 2016 habitat map, Late Lafourche Delta Region (ver. 1.1, May 2020) Louisiana Barrier Island Comprehensive Monitoring Program – 2008-2016 habitat change, Chandeleur Islands Region Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Litter quality Environmental data Elevation change along a coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in the Southeastern U.S.A. (2009-2014) data Data_Series_969_Tidal_Saline_Wetland_Migration_2030 A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models