Skip to main content
Advanced Search

Filters: Tags: climatologyMeteorologyAtmosphere (X) > Types: Downloadable (X)

2,104 results (116ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
PRISM climate data for Wyoming. Data can be accessed through the Geospatial Data Gateway http://datagateway.nrcs.usda.gov/.
thumbnail
LOCA is a statistical downscaling technique that uses past history to add improved fine-scale detail to global climate models. We have used LOCA to downscale 32 global climate models from the CMIP5 archive at a 1/16th degree spatial resolution, covering North America from central Mexico through Southern Canada. The historical period is 1950-2005, and there are two future scenarios available: RCP 4.5 and RCP 8.5 over the period 2006-2100 (although some models stop in 2099). The variables currently available are daily minimum and maximum temperature, and daily precipitation. For more information visit: http://loca.ucsd.edu/
thumbnail
WaSSI (Water Supply Stress Index) predicts how climate, land cover, and human population change may impact water availability and carbon sequestration at the watershed level (about the size of a county) across the lower 48 United States. WaSSI users can select and adjust temperature, precipitation, land cover, and water use factors to simulate change scenarios for any timeframe from 1961 through the year 2100.Simulation results are available as downloadable maps, graphs, and data files that users can apply to their unique information and project needs. WaSSI generates useful information for natural resource planners and managers who must make informed decisions about water supplies and related ecosystem services...
thumbnail
Average Winter (Jan-Mar) Temperature (2045-2060) simulated by RegCM3 with GENMOM projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline...
thumbnail
Difference of Spring (Apr-Jun) Precipitation (2045-2060 vs 1968-1999) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are millimeters. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations....
thumbnail
Potential Evapotranspiration simulated by the biogeography model MAPSS using RegCM3 climate with GFDL projections as boundary conditions. Units are millimeters of water. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds,...
thumbnail
Average Summer (Jul-Sep) Precipitation (2045-2060) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are millimeters. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline...
thumbnail
Difference of Average Winter (Jan-Mar) Temperature (2045-2060 vs 1968-1999) simulated by RegCM3 with GENMOM projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations....
thumbnail
Average Annual Temperature (2015-2030) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline was calculated...
thumbnail
Two future climate change scenarios at a resolution of 0.5 degree latitude/longitude for the conterminous United States were used in the Vegetation Ecosystems Modelling Analysis Project (VEMAP): a moderately warm scenario produced by the general circulation model from the Hadley Climate Centre [Johns et al., 1997; Mitchell and Johns, 1997], HADCM2SUL (up to a 2.8oC increase in average annual U.S. temperature in 2100) and a warmer scenario (up to a 5.8oC increase in average annual U.S. temperature in 2100), CGCM1, from the Canadian Climate Center [Boer et al., 1999a, 1999b; Flato et al., 1999]. Both general circulation models (GCMs) included sulfate aerosols and a fully dynamic 3-D ocean. Both transient scenarios...
thumbnail
Increasing temperatures across the region will cause a lengthening of the growing season and an increase in heat accumulation (measured as summer warmth index) during summer months. These changes could have profound effects on phenology, plant growth, water availability, and species distributions. July temperature isotherms and SWI have been used to help define vegetation distribution and potential for vegetation change across the boreal and arctic biomes. The northern limit of the boreal forest occurs approximately at the 12°C mean July isotherm and a SWI of 35°C mo, and strong linkages have been described between SWI and treeline advance. The southern boundary for the boreal forest occurs at approximately the...
thumbnail
Leaf Area Index simulated by the biogeography model MAPSS using RegCM3 climate with ECHAM5 projections as boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds, the model defines the following plant...
thumbnail
Two future climate change scenarios at a resolution of 0.5 degree latitude/longitude for the conterminous United States were used in the Vegetation Ecosystems Modelling Analysis Project (VEMAP): a moderately warm scenario produced by the general circulation model from the Hadley Climate Centre [Johns et al., 1997; Mitchell and Johns, 1997], HADCM2SUL (up to a 2.8oC increase in average annual U.S. temperature in 2100) and a warmer scenario (up to a 5.8oC increase in average annual U.S. temperature in 2100), CGCM1, from the Canadian Climate Center [Boer et al., 1999a, 1999b; Flato et al., 1999]. Both general circulation models (GCMs) included sulfate aerosols and a fully dynamic 3-D ocean. Both transient scenarios...
thumbnail
Difference of Leaf Area Index (2045-2060 vs 1968-1999) simulated by the biogeography model MAPSS using RegCM3 climate with ECHAM5 projections as boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds,...
thumbnail
Potential Natural Vegetation Class simulated by the biogeography model MAPSS using RegCM3 climate with GFDL projections as boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds, the model defines...
thumbnail
Runoff simulated by the biogeography model MAPSS using RegCM3 climate with GENMOM projections as boundary conditions. Units are millimeters of water. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds, the model...
thumbnail
Runoff simulated by the biogeography model MAPSS using RegCM3 climate with ECHAM5 projections as boundary conditions. Units are millimeters of water. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds, the model...
thumbnail
This dataset contains RegCM3 Climate Change modeled mean November - February temperature (degrees C) data for the Middle Rockies Ecoregion (1980-1999).
thumbnail
Average Summer (Jul-Sep) Temperature (2015-2030) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline...


map background search result map search result map Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 WASSI Future Change in Water Supply Stress Index 1991-2010 Projected Future LOCA Statistical Downscaling (Localized Constructed Analogs) Statistically downscaled CMIP5 climate projections for North America BLM REA MIR 2011 RegCM3 April Snow Water Equivalent (2050-2069) BLM REA MIR 2011 RegCM3 November - February Temperature (1980-1999) BLM REA COP 2010 Runoff (2045-2060) Simulated by MAPSS using RegCM3 Climate with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Runoff (2015-2030) Simulated by MAPSS using RegCM3 Climate with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Projected annual average precipitation (mm) under HAD future climate scenario 2070-2099 for the Colorado Plateau ecoregion, USA BLM REA COP 2010 Potential Natural Vegetation Class (2045-2060) Simulated by MAPSS using RegCM3 Climate with GFDL Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Leaf Area Index (2045-2060 vs 1968-1999) Simulated by MAPSS using RegCM3 Climate with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Summer (Jul-Sep) Temperature (2015-2030) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Spring (Apr-Jun) Precipitation (2045-2060 vs 1968-1999) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Winter (Jan-Mar) Temperature (2045-2060) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Potential Evapotranspiration (2045-2060) Simulated by MAPSS using RegCM3 Climate with GFDL Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Summer (Jul-Sep) Precipitation (2045-2060) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Average Winter (Jan-Mar) Temperature (2045-2060 vs 1968-1999) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Annual Temperature (2015-2030) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Historic annual average precipitation (mm) 1961-1990 (VEMAP version) for the Colorado Plateau ecoregion, USA BLM REA CYR 2013 Long-term Future (2060s) Mean July Temperature Isotherms BLM REA SOD 2010 Leaf Area Index (2045-2060) Simulated by MAPSS using RegCM3 Climate with ECHAM5 Projections as Boundary Conditions (Western US) Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 BLM REA SOD 2010 Leaf Area Index (2045-2060) Simulated by MAPSS using RegCM3 Climate with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Runoff (2045-2060) Simulated by MAPSS using RegCM3 Climate with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Runoff (2015-2030) Simulated by MAPSS using RegCM3 Climate with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Potential Natural Vegetation Class (2045-2060) Simulated by MAPSS using RegCM3 Climate with GFDL Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Leaf Area Index (2045-2060 vs 1968-1999) Simulated by MAPSS using RegCM3 Climate with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Summer (Jul-Sep) Temperature (2015-2030) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Spring (Apr-Jun) Precipitation (2045-2060 vs 1968-1999) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Winter (Jan-Mar) Temperature (2045-2060) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Potential Evapotranspiration (2045-2060) Simulated by MAPSS using RegCM3 Climate with GFDL Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Summer (Jul-Sep) Precipitation (2045-2060) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Average Winter (Jan-Mar) Temperature (2045-2060 vs 1968-1999) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Annual Temperature (2015-2030) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Projected annual average precipitation (mm) under HAD future climate scenario 2070-2099 for the Colorado Plateau ecoregion, USA BLM REA COP 2010 Historic annual average precipitation (mm) 1961-1990 (VEMAP version) for the Colorado Plateau ecoregion, USA BLM REA CYR 2013 Long-term Future (2060s) Mean July Temperature Isotherms WASSI Future Change in Water Supply Stress Index 1991-2010 BLM REA MIR 2011 RegCM3 April Snow Water Equivalent (2050-2069) BLM REA MIR 2011 RegCM3 November - February Temperature (1980-1999) Projected Future LOCA Statistical Downscaling (Localized Constructed Analogs) Statistically downscaled CMIP5 climate projections for North America