Skip to main content
Advanced Search

Filters: Tags: climatic gradients (X) > Categories: Publication (X)

2 results (59ms)   

View Results as: JSON ATOM CSV
Abstract: As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost–distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The...
Aim Woody plants affect vegetation?environment interactions by modifying microclimate, soil moisture dynamics and carbon cycling. In examining broad-scale patterns in terrestrial vegetation dynamics, explicit consideration of variation in the amount of woody plant cover could provide additional explanatory power that might not be available when only considering landscape-scale climate patterns or specific vegetation assemblages. Here we evaluate the interactive influence of woody plant cover on remotely sensed vegetation dynamics across a climatic gradient along a sky island. Location The Santa Rita Mountains, Arizona, USA. Methods Using a satellite-measured normalized difference vegetation index (NDVI) from 2000...