Skip to main content
Advanced Search

Filters: Tags: charcoal (X)

11 results (12ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2–2.0 μm e.s.d.), medium (0.02–0.2 μm e.s.d.), and fine (> 0.02 μm e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2–5 μm as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture...
We investigated the bioavailability via diet of spiked benzo[a]pyrene (BaP) and 2,2',5,5'-tetrachlorobiphenyl (PCB-52) from different carbonaceous (non-carbonate, carbon containing) particle types to clams (Macoma balthica) collected from San Francisco Bay. Our results reveal significant differences in absorption efficiency between compounds and among carbonaceous particle types. Absorption efficiency for PCB-52 was always greater than that for BaP bound to a given particle type. Among particles, absorption efficiency was highest from wood and diatoms and lowest from activated carbon. Large differences in absorption efficiency could not be simply explained by comparatively small differences in the particles' total...
Fires in terrestrial ecosystems produce large amounts of charcoal that persist in the environment and represent a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred organic matter in soils. Four materials (cellulose, lignin, pine bark, and pine wood) and char from these materials, created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450 degrees C), were studied. Mid-infrared spectra and measures of acidity (total acids, carboxylic acids, lactones, and phenols as determined...
thumbnail
Sediment cores were collected in Great Dismal Swamp National Wildlife Refuge in November, 2017 to advance understanding of climate- and land-management driven changes in vegetation, hydrology, and fire regimes. Radiocarbon dates were obtained from samples in two cores (GDS-519-3-21-2017 and GDS-520-3-21-2017) to generate age models for the cores. Bulk sediment samples, charcoal, plant macrofossils, and pollen residue were selected at the USGS in Reston, Virginia and submitted to Beta Analytic, Inc. and the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) laboratories for radiocarbon dating. Those laboratories provided both radiocarbon ages and stable carbon isotope (delta 13C) results, which can be...
thumbnail
Charcoal counts and radiocarbon dates from four sediment cores collected in Great Dismal Swamp in 2017 and 2018 were incorporated into a synthesis of charcoal records from northern hemisphere peatlands (Sims et al., in review). Macroscopic charcoal was counted in three size classes: 125-250 micrometers, and 250-500 micrometers, and >500 micrometers. Uncalibrated radiocarbon dates were obtained and provided for use in development of age models for analyses by Sims et al., in review).
This work characterizes the efficacy of activated carbon amendment in reducing polychlorinated biphenyl (PCB) bioavailability to clams (Macoma balthica) from field-contaminated sediment (Hunters Point Naval Shipyard, San Francisco Bay, CA, USA). Test methods were developed for the use of clams to investigate the effects of sediment amendment on biological uptake. Sediment was mixed with activated carbon for one month. Bioaccumulation tests (28 d) were employed to assess the relationships between carbon dose and carbon particle size on observed reductions in clam biological uptake of PCBs. Extraction and cleanup protocols were developed for the clam tissue. Efficacy of activated carbon treatment was found to increase...
The objective of this research was to investigate the effect of charring on near infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred carbon in soils. Four materials (cellulose, lignin, pine bark and pine wood) and char from these materials created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450°C) were studied. Near infrared spectra and measures of acidity (total acids, carboxylic acids, lactones and phenols as determined by titration) were available for 56 different samples (Not all samples charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature...
Charcoal is well known to accumulate contaminants, but its association with metals and other toxic elements in natural settings has not been well studied. Association of contaminants with charcoal in soil and sediment may affect their mobility, bioavailability, and fate in the environment. In this paper, natural wildfire charcoal samples collected from a wetland site that has been heavily contaminated by mine waste were analyzed for elemental contents and compared to the surrounding soil. Results showed that the charcoal particles were enriched over the host soils by factors of two to 40 times in all contaminant elements analyzed. Principal component analysis was carried out on the data to determine whether element...
The objective of this research was to investigate the effect of charring on near infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred carbon in soils. Four materials (cellulose, lignin, pine bark and pine wood) and char from these materials created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450°C) were studied. Near infrared spectra and measures of acidity (total acids, carboxylic acids, lactones and phenols as determined by titration) were available for 56 different samples (Not all samples charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature...
Fires in terrestrial ecosystems produce large amounts of charcoal that persist in the environment and represent a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred organic matter in soils. Four materials (cellulose, lignin, pine bark, and pine wood) and char from these materials, created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450 °C), were studied. Mid-infrared spectra and measures of acidity (total acids, carboxylic acids, lactones, and phenols as determined by titration)...
Abstract (from http://journal.frontiersin.org/article/10.3389/fpls.2014.00785/abstract): Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques...


    map background search result map search result map Radiocarbon dates, charcoal, and polycyclic aromatic hydrocarbon (PAH) data from Great Dismal Swamp Sites GDS-519 and GDS-520 Charcoal data from four sites in Great Dismal Swamp National Wildlife Refuge - August 2022 Charcoal data from four sites in Great Dismal Swamp National Wildlife Refuge - August 2022 Radiocarbon dates, charcoal, and polycyclic aromatic hydrocarbon (PAH) data from Great Dismal Swamp Sites GDS-519 and GDS-520