Skip to main content
Advanced Search

Filters: Tags: black spruce (X)

30 results (36ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset represents presence of Black Spruce (Picea mariana) at year 100 (2095) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Black Spruce (Picea mariana) at year 150 (2145) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Black Spruce (Picea mariana) at year 50 (2045) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Black Spruce (Picea mariana) at year 0 (1995) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Black Spruce (Picea mariana) at year 150 (2145) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Contemporary harvest rates and intensities were simulated.
thumbnail
This dataset represents presence of Black Spruce (Picea mariana) at year 0 (1995) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2014JG002683/abstract): Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2 ), water, and energy fluxes, associated environmental variables, and methane (CH4 ) fluxes at the collapse scar bog. The ecosystems...
thumbnail
This dataset represents presence of Black Spruce (Picea mariana) at year 50 (2045) from a single model run of LANDIS-II. The simulation assumed Intergovernmental Panel on Climate Change (IPCC) B2 emissions (moderate) and used the Hadley 3 global circulation model. Restoration harvest rates and intensities were simulated.
thumbnail
This dataset represents actual and predicted suitable habitat for Picea mariana (black spruce, species code 95) in the Eastern United States as measured by importance value based on data obtained from the Forest Inventory and Analysis (FIA) project, current climate conditions, and future climate projections. This summary unit of this dataset is a 20 by 20 kilometer cell. The actual importance value (IV) was calculated based on the number of stems and basal area of a given tree species relative to other tree species on a plot using about 100,000 FIA plots (representing nearly 3 million tree records) in the 37 states within the United States east of the 100th meridian. These importance values were summarized to 20...


map background search result map search result map Eastern United States Climate Change Tree Atlas - Suitable habitat for Picea mariana (black spruce) as measured by importance value (IV) Minnesota (USA) Climate Change Project: Black Spruce at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 0 (1995), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 150 (2145), assuming emissions scenario B2, Hadley 3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 100 (2095), assuming emissions scenario B2, Hadley 3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 50 (2045), assuming emissions scenario B2, Hadley 3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 150 (2145), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 100 (2095), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 50 (2045), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 0 (1995), assuming emissions scenario B2, Hadley3 GCM, restoration harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 150 (2145), assuming emissions scenario B2, Hadley 3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 100 (2095), assuming emissions scenario B2, Hadley 3 GCM, contemporary harvest rates and intensity Minnesota (USA) Climate Change Project: Black Spruce at Year 50 (2045), assuming emissions scenario B2, Hadley 3 GCM, contemporary harvest rates and intensity Eastern United States Climate Change Tree Atlas - Suitable habitat for Picea mariana (black spruce) as measured by importance value (IV)