Skip to main content
Advanced Search

Filters: Tags: biological invasions (X)

28 results (61ms)   

View Results as: JSON ATOM CSV
A relatively small subset of exotic plant species competitively exclude their neighbors in invaded recipient communities but coexist with neighbors in their native habitat. Allelopathy has been argued as one of the mechanisms by which such exotics may become successful invaders. Three approaches have been used to examine allelopathy as a mechanism for invasion. The traditional approach examines exotic invasives in the same way that other native plants also suspected of allelopathic activities are studied. In this approach dose, fate, and replenishment of chemicals can provide powerful evidence for allelopathic processes. The bio-geographical approach often does not provide as much mechanistic evidence for allelopathy,...
1 Most theory and empirical research on exotic invasions is based on the assumption that problematic exotics are much more abundant in the regions where they invade than in the regions where they are native. However, the overwhelming majority of studies on exotic plants have been conducted solely within the introduced range. With few exceptions, ecologists know surprisingly little about the abundance, interaction strengths and ecosystems impacts of even the best-studied exotics in their native range. 2 We argue that taking a biogeographical approach is key to understanding exotic plant invasions. On a descriptive level, unambiguous quantification of distributions and abundances of exotics in native and introduced...
thumbnail
Understanding species?environment relationships is important to predict the spread of non-native species. Yellow toadflax (Linaria vulgaris Mill.) is an invasive perennial recently found in the Flat Tops Wilderness of the White River National Forest on the western slope of the Colorado Rocky Mountains. We hypothesized yellow toadflax occurrence could be predicted from easily measured site characteristics. We used logistic regression with stepwise selection to generate a model to predict yellow toadflax occurrence on a particular plot based on that site?s physical characteristics. The experimental design was a paired-plot study in two locations using circular 1,018-m2 plots. Sixty-eight plots that did not contain...
The United States National Park Service was created to protect and make accessible to the public the nation?s most precious natural resources and cultural features for present and future generations. However, this heritage is threatened by the invasion of non-native plants, animals, and pathogens. To evaluate the scope of invasions, the USNPS has inventoried non-native plant species in the 216 parks that have significant natural resources, documenting the identity of non-native species. We investigated relationships among non-native plant species richness, the number of threatened and endangered plant species, native species richness, latitude, elevation, park area and park corridors and vectors. Parks with many...
Although the impacts of exotic plant invasions on community structure and ecosystem processes are well appreciated, the pathways or mechanisms that underlie these impacts are poorly understood. Better exploration of these processes is essential to understanding why exotic plants impact only certain systems, and why only some invaders have large impacts. Here, we review over 150 studies to evaluate the mechanisms underlying the impacts of exotic plant invasions on plant and animal community structure, nutrient cycling, hydrology and fire regimes. We find that, while numerous studies have examined the impacts of invasions on plant diversity and composition, less than 5% test whether these effects arise through competition,...


map background search result map search result map Predicting yellow toadflax infestations in the Flat Tops Wilderness of Colorado Species distribution model of the invasive annual grass Bromus rubens (red brome) in the Mojave Desert Species distribution model of the invasive annual grass Schismus spp (Mediterranean split grass) in the Mojave Desert Species distribution model of the invasive annual grass Bromus tectorum (cheatgrass) in the Mojave Desert Predicting yellow toadflax infestations in the Flat Tops Wilderness of Colorado Species distribution model of the invasive annual grass Bromus rubens (red brome) in the Mojave Desert Species distribution model of the invasive annual grass Schismus spp (Mediterranean split grass) in the Mojave Desert Species distribution model of the invasive annual grass Bromus tectorum (cheatgrass) in the Mojave Desert