Skip to main content
Advanced Search

Filters: Tags: biogeochemistry (X)

617 results (158ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data set presents attributes of floodplain ecosystem characteristics including floodplain soil denitrification, floodplain soil biogeochemistry, floodplain vegetation, floodplain sedimentation, floodplain and channel morphometry, stream discharge and water quality, floodplain climate, floodplain physiographic region, and catchment land cover. Attributes are associated with 18 floodplains of the Chesapeake Bay watershed. For many of these attributes, mean values are summaries of multiple measurements made within each floodplain site.
The objectives of my current research are to 1. Understand the water quality effects of fire, 2. Measure the effects of fire on the carbon cycle and other biogeochemical cycles, 3. Characterize the combustion products of wildfire, mainly ash and charcoal, and 4. Link post-fire responses and the composition, physical characteristics, and reactivity of ash and charcoal to measures of burn severity detected on the ground or using remotely-sensed data. The overarching objective of my research is to understand runoff, erosion, deposition, and water quality effects after wildfire.
Rising atmospheric carbon dioxide concentration ([CO2]) has the potential to stimulate ecosystem productivity and sink strength, reducing the effects of carbon (C) emissions on climate. In terrestrial ecosystems, increasing [CO2] can reduce soil nitrogen (N) availability to plants, preventing the stimulation of ecosystem C assimilation; a process known as progressive N limitation. Using ion exchange membranes to assess the availability of dissolved organic N, ammonium and nitrate, we found that CO2 enrichment in an Australian, temperate, perennial grassland did not increase plant productivity, but did reduce soil N availability, mostly by reducing nitrate availability. Importantly, the addition of 2 °C warming...
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil...
thumbnail
Recent work in seasonally snow covered ecosystems has identified thawed soil and high levels of heterotrophic activity throughout the winter under consistent snow cover. We performed measurements during the winter of 1994 to determine how the depth and timing of seasonal snow cover affect soil microbial populations, surface water NO3/- loss during snowmelt, and plant N availability early in the growing season. Soil under early accumulating, consistent snow cover remained thawed during most of the winter and both microbial biomass and soil inorganic N pools gradually increased under the snowpack. At the initiation of snowmelt, microbial biomass N pools increased from 3.0 to 5.9 g N m-2, concurrent with a decrease...
Categories: Publication; Types: Citation; Tags: Biogeochemistry
thumbnail
In-stream nitrogen processing in the Mississippi River has been suggested as one mechanism to reduce coastal eutrophication in the Gulf of Mexico. Aquatic macrophytes in river channels and flood plain lakes have the potential to temporarily remove large quantities of nitrogen through assimilation both by themselves and by the attached epiphyton. In addition, rooted macrophytes act as oxygen pumps, creating aerobic microsites around their roots where coupled nitrification-denitrification can occur. We used in situ 15N-NO3- tracer mesocosm experiments to measure nitrate assimilation rates for macrophytes, epiphyton, and microbial fauna in the sediment in Third Lake, a backwater lake of the upper Mississippi River...
Categories: Publication; Types: Citation; Tags: Biogeochemistry
Within the past few decades, humans have dramatically altered the earth?s nitrogen (N) cycle. Introduction of reactive nitrogen (N) into the biosphere by humans now exceeds the rate of biological N2-fixation in native terrestrial ecosystems (Galloway et al. 2004). This increased reactive N is due primarily to N fertilizer production and fossil fuel combustion used to support the food and energy demands of a rapidly expanding human population. The negative human and environment health effects of this increased N are many (Galloway et al. 2008; Howarth et al. 2005; UNEP and WHRC 2007). Denitrification is the main process that permanently removes fixed N from the environment. Denitrification, the microbial production...
thumbnail
Dissolved organic carbon (DOC) dynamics in streams is important, yet few studies focus on DOC dynamics in Midwestern streams during storms. In this study, stream DOC dynamics during storms in two Midwestern watersheds with contrasting land uses, the change in character of stream DOC during storms, and the usability of DOC as a hydrologic tracer in artificially drained landscapes of the Midwest are investigated. Major cation/DOC concentrations, and DOC specific UV absorbance (SUVA) and fluorescence index (FI) were monitored at 2-4 h intervals during three spring storms. Although DOC is less aromatic in the mixed land use watershed than in the agricultural watershed, land use has little impact on stream DOC concentration...
Categories: Publication; Types: Citation; Tags: Biogeochemistry
thumbnail
We studied the chemical and optical changes inthe dissolved organic matter (DOM) from twofreshwater lakes and a Sphagnum bog afterexposure to solar radiation. Stable carbonisotopes and solid-state 13C-NMR spectraof DOM were used together with optical andchemical data to interpret results fromexperimental exposures of DOM to sunlight andfrom seasonal observations of two lakes innortheastern Pennsylvania. Solar photochemicaloxidation of humic-rich bog DOM to smaller LMWcompounds and to DIC was inferred from lossesof UV absorbance, optical indices of molecularweight and changes in DOM chemistry. Experimentally, we observed a 1.2‰ enrichment in δ13$C and a 47% loss in aromaticC functionality in bog DOM samples exposed...
Categories: Publication; Types: Citation; Tags: Biogeochemistry


map background search result map search result map Data on denitrification and ecological characteristics of nontidal floodplains, Chesapeake Bay watershed, USA, 2013-2016 Data on denitrification and ecological characteristics of nontidal floodplains, Chesapeake Bay watershed, USA, 2013-2016