Skip to main content
Advanced Search

Filters: Tags: annual herbaceous (X)

37 results (98ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-3 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-3 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-3 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
The need to monitor change in sagebrush steppe is urgent due to the increasing impacts of climate change, shifting fire regimes, and management practices on ecosystem health. Remote sensing provides a cost-effective and reliable method for monitoring change through time and attributing changes to drivers. We report an automated method of mapping rangeland fractional component cover over a large portion of the Northern Great Basin, USA, from 1986 to 2016 using a dense Landsat imagery time series. 2012 was excluded from the time-series due to a lack of quality imagery. Our method improved upon the traditional change vector method by considering the legacy of change at each pixel. We evaluate cover trends stratified...
Tags: AZ, Arizona, Arizona Plateau, Black Hills, Blue Mountains, All tags...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
The need to monitor change in sagebrush steppe is urgent due to the increasing impacts of climate change, shifting fire regimes, and management practices on ecosystem health. Remote sensing provides a cost-effective and reliable method for monitoring change through time and attributing changes to drivers. We report an automated method of mapping rangeland fractional component cover over a large portion of the Northern Great Basin, USA, from 1986 to 2016 using a dense Landsat imagery time series. 2012 was excluded from the time-series due to a lack of quality imagery. Our method improved upon the traditional change vector method by considering the legacy of change at each pixel. We evaluate cover trends stratified...
Tags: AZ, Arizona, Arizona Plateau, Black Hills, Blue Mountains, All tags...
thumbnail
The dataset provides a near real time estimation of 2020 herbaceous mostly annual fractional cover predicted on July 1st with an emphasis on annual exotic grasses Historically, similar maps were produced at a spatial resolution of 250m (Boyte et al. 2019 https://doi.org/10.5066/P96PVZIF., Boyte et al. 2018 https://doi.org/10.5066/P9RIV03D.), but starting this year we are mapping at a 30m resolution (Pastick et al. 2020 doi:10.3390/rs12040725). This dataset was generated using in situ observations from Bureau of Land Management’s (BLM) Assessment, Inventory, and Monitoring data (AIM) plots; weekly composites of harmonized Landsat and Sentinel-2 (HLS) data (https://hls.gsfc.nasa.gov/); relevant environmental, vegetation,...
thumbnail
This dataset provides a near-real-time estimate of 2018 herbaceous annual cover with an emphasis on annual grass (Boyte and Wylie. 2016. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015. Rangelands 38:278-284.) This estimate was based on remotely sensed enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) data gathered through July 1, 2018. This is the second iteration of an early estimate of herbaceous annual cover for 2018 over the same geographic area. The previous dataset used eMODIS NDVI data gathered through May 1 (https://doi.org/10.5066/P9KSR9Z4). The pixel values for this most recent estimate ranged from 0 to100% with...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
The dataset provides a spatially explicit estimate of 2019 herbaceous annual percent cover predicted on May 1st with an emphasis on annual grasses. The estimate is based on the mean output of two regression-tree models. For one model, we include, as an independent variable amongst other independent variables, a dataset that is the mean of 17-years of annual herbaceous percent cover (https://doi.org/10.5066/F71J98QK). This model's test mean error rate (n = 1670), based on nine different randomizations, equals 4.9% with a standard deviation of +/- 0.15. A second model was developed that did not include the mean of 17-years of annual herbaceous percent cover, and this model's test mean error rate (n = 1670), based...
thumbnail
The need to monitor change in sagebrush steppe is urgent due to the increasing impacts of climate change, shifting fire regimes, and management practices on ecosystem health. Remote sensing provides a cost-effective and reliable method for monitoring change through time and attributing changes to drivers. We report an automated method of mapping rangeland fractional component cover over a large portion of the Northern Great Basin, USA, from 1986 to 2016 using a dense Landsat imagery time series. 2012 was excluded from the time-series due to a lack of quality imagery. Our method improved upon the traditional change vector method by considering the legacy of change at each pixel. We evaluate cover trends stratified...
Tags: AZ, Arizona, Arizona Plateau, Black Hills, Blue Mountains, All tags...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-3 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-3 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Western U.S. rangelands have been quantified as six fractional cover (0-100%) components over the Landsat archive (1985-2018) at 30-m resolution, termed the “Back-in-Time” (BIT) dataset. Robust validation through space and time is needed to quantify product accuracy. We leverage field data observed concurrently with HRS imagery over multiple years and locations in the Western U.S. to dramatically expand the spatial extent and sample size of validation analysis relative to a direct comparison to field observations and to previous work. We compare HRS and BIT data in the corresponding space and time. Our objectives were to evaluate the temporal and spatio-temporal relationships between HRS and BIT data, and to compare...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystems condition in arid and semiarid lands. We developed an innovative approach by integrating multiple information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of five major parts: field sample collection, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, coarse resolution estimate of shrubland components across a large geographic extent using Landsat 8 phenological mosaics and regression tree models, and...
thumbnail
The need to monitor change in sagebrush steppe is urgent due to the increasing impacts of climate change, shifting fire regimes, and management practices on ecosystem health. Remote sensing provides a cost-effective and reliable method for monitoring change through time and attributing changes to drivers. We report an automated method of mapping rangeland fractional component cover over a large portion of the Northern Great Basin, USA, from 1986 to 2016 using a dense Landsat imagery time series. 2012 was excluded from the time-series due to a lack of quality imagery. Our method improved upon the traditional change vector method by considering the legacy of change at each pixel. We evaluate cover trends stratified...
Tags: AZ, Arizona, Arizona Plateau, Black Hills, Blue Mountains, All tags...


map background search result map search result map Shrub Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Sagebrush Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Big Sagebrush Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Annual Herbaceous Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Bare Ground Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Sagebrush Height - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Shrub Height - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Herbaceous Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Shrub Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Bare Ground Percent  - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Sagebrush Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Annual Herbaceous Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2018 Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2019) Temporal and Spatio-Temporal High-Resolution Satellite Data for the Validation of a Landsat Time-Series of Fractional Component Cover Across Western United States (U.S.) Rangelands Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Products for the Western U.S., 1985 - 2018 Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Annual Herbaceous Products for the Western U.S., 1985 - 2018 Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Bare Ground Products for the Western U.S., 1985 - 2018 Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Litter Products for the Western U.S., 1985 - 2018 Near real time estimation of annual exotic herbaceous fractional cover in the sagebrush ecosystem 30m, USA, July 2020 Temporal and Spatio-Temporal High-Resolution Satellite Data for the Validation of a Landsat Time-Series of Fractional Component Cover Across Western United States (U.S.) Rangelands Near-real-time Herbaceous Annual Cover in the Sagebrush Ecosystem, USA, July 2018 Early Estimates of Herbaceous Annual Cover in the Sagebrush Ecosystem (May 1, 2019) Near real time estimation of annual exotic herbaceous fractional cover in the sagebrush ecosystem 30m, USA, July 2020 Herbaceous Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Shrub Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Bare Ground Percent  - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Sagebrush Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Annual Herbaceous Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Montona/Wyoming Study Area Shrub Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Sagebrush Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Big Sagebrush Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Annual Herbaceous Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Bare Ground Percent - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Sagebrush Height - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Shrub Height - Provisional Remote Sensing Shrub/Grass NLCD Products for the Great Basin Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Products for the Western U.S., 1985 - 2018 Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Annual Herbaceous Products for the Western U.S., 1985 - 2018 Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Bare Ground Products for the Western U.S., 1985 - 2018 Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-in-Time (BIT) Litter Products for the Western U.S., 1985 - 2018