Skip to main content
Advanced Search

Filters: Tags: Water potential (X)

17 results (1.9s)   

View Results as: JSON ATOM CSV
Gas exchange and water relations responses to warming were compared for two shrub species, Artemisia tridentata spp. vaseyana (Asteraceae), a widely distributed evergreen species of the Great Basin and the western slope of the Rocky Mountains, and Pentaphylloides floribunda (Rosaceae), a deciduous shrub limited in distribution to moist, high-elevation meadows. Plants were exposed to an in situ infrared (IR) climate change manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, CO. Measurements of gas exchange and water relations were made on the two species in July and August, 1993 from plants growing in situ in infrared-heated and control plots. Carbon dioxide uptake, water loss, leaf temperature,...
For much of the western USA, precipitation occurs in pulses, the nature of which determine soil water potential and plant physiological performance. This research utilized three experiments to examine the sensitivity of photosynthesis and water relations for two widespread Great Basin Desert shrub species, Artemisia tridentata (which has both deep and shallow roots) and Purshia tridentata (which reportedly has only deep roots), to (1) variation in pulse magnitude size, (2) the kinetics of responses to pulses, and (3) the relationship between pulse-size and antecedent soil water content. At the study site in the southwestern Great Basin Desert, USA, summer rainfall exhibits a greater frequency of larger-sized events,...
After-ripening, the loss of dormancy under dry conditions, is associated with a decrease in mean base water potential for germination of Bromus tectorum L. seeds. After-ripening rate is a linear function of temperature above a base temperature, so that dormancy loss can be quantified using a thermal after-ripening time (TAR) model. To incorporate storage water potential into TAR, we created a hydrothermal after-ripening time (HTAR) model. Seeds from two B. tectorum populations were stored under controlled temperatures (20 or 30 �C) and water potentials (?400 to ?40 MPa). Subsamples were periodically removed from each storage treatment and incubated at 15 or 25 �C to determine germination time courses. Dormancy status...
Numerous basins of the intermountain area often have extensive playa surfaces that are nearly devoid of vegetation. Margins of these playas support sparse communities dominated by chenopod shrubs Allenrolfea occidentalis (iodine bush) and Sacrobatus vermiculatus (black greasewood). These plants establish and persist in an environment where halomorphic soils induce extreme osmotic stress and atmospheric precipitation is very low and erratic and occurs largely during the winter when temperatures are too low for growth. We measured net CO2 assimilation rates, leaf conductances, transpiration rates, water-use efficiencies, and stem xylem potentials for these two C3 species. Data were collected in above-average (1991)...
Pressure-volume measurements were made on Artemisia tridentata Nutt. ssp. tridentata samples rehydrated for 0, 1.5, 3, 6 or 24 h. Increasing rehydration time caused a significant increase in osmotic potential at turgor loss, cell elasiticity, and the relative water content at turgor loss, and a significant decrease in pressure potential at saturation. Osmotic potential at saturation was changed significantly by rehydration, but no consistent trend was observed. The symplastic water fraction did not differ significantly among treatments. The increase in the osmotic potential at turgor loss did not correspond with decreasing cell elasticity or synthesis of solutes. Instead, the leaf solute content remained constant...
? This research tested the hypothesis that experimental infrared warming will reduce photosynthesis for the evergreen shrub Artemisia tridentata and the subalpine, herbaceous Erythronium grandiflorum exposed to an in situ experimental freezing event during the spring snowmelt period. ? Photosynthetic tolerance of freezing was measured for plants growing under infrared (IR) warming at 3050 m in the Rocky Mountains, Colorado, USA. In situ freezing was imposed using cold nitrogen gas (from a pressurized container of liquid nitrogen) passed through a heat exchanger placed on top of stems and leaves. ? Plant water potential, photosynthetic CO2 assimilation, and stomatal conductance to water vapor were higher for both...
Relative water content (RWC) and water potential were compared for leaves of several plant species exposed to a warming manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, Colorado, USA, to test the hypothesis that species-specific changes in water relations parameters will occur in response to future increases in planetary air temperatures. Leaves of Artemisia tridentata, Erigeron speciosus, Festuca thurberi, Helianthella quinquinervis, Potentilla fruticosa, Potentilla gracilis and Rhodiola integrifolia were collected from plants growing in situ in control and infrared (IR)-heated (22 W m−2) plots in a meadow near the upper elevational distribution limit for A. tridentata. For six of...
1. Microclimate was measured and photosynthetic responses to a climate warming manipulation were compared for the evergreen shrub Artemisia tridentata and the herbaceous forb Erigeron speciosus in the Rocky Mountains, Colorado, USA. 2. Soil was warmer and drier under infra-red heaters compared with control plots. 3. Midday xylem pressure potential did not differ for A. tridentata on heated vs control plots but was lower for E. speciosus on heated plots compared with controls. Leaf temperatures did not vary for the two species on heated or control plots. 4. There were no significant treatment or species differences in the diurnal patterns of CO2 assimilation or stomatal conductance to water vapour. Also, there were...
Biological soil crusts dominated by drought-tolerant mosses are commonly found through arid and semiarid steppe communities of the northern Great Basin of North America. We conducted growth chamber experiments to investigate the effects of these crusts on the germination of four grasses: Festuca idahoensis, Festuca ovina, Elymus wawawaiensis and Bromus tectorum. For each of these species, we recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the tall moss Tortula ruralis and the other dominated by the short moss Bryum argenteum. On the short-moss crust, the final germination percentage was about half of that on bare soil. Also, the mean germination...
Bromus tectorum L. is an invasive winter annual grass with seeds that lose dormancy through the process of dry after-ripening. This paper proposes a model for after-ripening of B. tectorum seeds based on the concept of hydrothermal time. Seed germination time course curves are modelled using five parameters: a hydrothermal time constant, the fraction of viable seeds in the population, base temperature, mean base water potential and the standard deviation of base water potentials in the population. It is considered that only mean base water potential varies as a function of storage duration and incubation temperature following after-ripening. All other parameters are held constant throughout after-ripening and at...
Plant H"2O relations and soil moisture depletion and recharge were followed in a stand of Artemisia tridentata near Washtucna, Washington during 1973 and 1974. Precipitation during the 1972-73 recharge season was 14.5 cm, 11 cm below normal. The 1973-74 precipitation was 35.7 cm, or 10 cm above normal. The 2 yr were therefore ideal for comparing plant behavior on wet vs. dry years. Soil moisture was depleted to around -70 bars in 1973 and -60 bars in 1974 to depths of 2.5 m. Leaf H"2O potentials were -10 bars in the spring and decreased to -50 to -60 bars in the summer of 1973. In 1974, summer leaf H"2O potential was -30 bars. Osmotic potentials were around -20 bars in the spring of 1973 and throughout the spring...
Biological soil crusts can affect seed germination and seedling establishment. We have investigated the effect of biological soil crusts on seed water status as a potential mechanism affecting seed germination. The seed water potential of two annual grasses, one exotic Bromus tectorum L. and another native Vulpia microstachys Nutt., were analyzed after placing the seeds on bare soil, on a crust that contains various lichens and mosses (mixed crust), or on a crust dominated by the crustose lichen Diploschistes muscorum (Scop.) R. Sant. (Diploschistes crust). Seed water potential and germination were similar on the bare soil and the mixed crust, except for the initial germination of V. microstachys, which was higher...