Skip to main content
Advanced Search

Filters: Tags: Water Resources Research (X)

866 results (106ms)   

View Results as: JSON ATOM CSV
thumbnail
Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
Machine learning techniques were applied to a large (n > 10,000) compliance monitoring database to predict the occurrence of several redox-active constituents in groundwater across a large watershed. Specifically, random forest classification was used to determine the probabilities of detecting elevated concentrations of nitrate, iron, and arsenic in the Fox, Wolf, Peshtigo, and surrounding watersheds in northeastern Wisconsin. Random forest classification is well suited to describe the nonlinear relationships observed among several explanatory variables and the predicted probabilities of elevated concentrations of nitrate, iron, and arsenic. Maps of the probability of elevated nitrate, iron, and arsenic can be...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
In this study, we integrated satellite-drived precipitation and modeled evapotranspiration data (2000–2012) to describe spatial variability of hydrologic sources and sinks in the Nile Basin. Over 2000–2012 period, 4 out of 11 countries (Ethiopia, Tanzania, Kenya, and Uganda) in the Nile Basin showed a positive water balance while three downstream countries (South Sudan, Sudan, and Egypt) showed a negative balance. Gravity Recovery and Climate Experiment (GRACE) mass deviation in storage data analysis showed that at annual timescales, the Nile Basin storage change is substantial while over longer time periods, it is minimal (<1% of basin precipitation). We also used long-term gridded runoff and river discharge data...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
The 10 day explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile, draped adjacent watersheds with a few cm to >1 m of tephra. Subsequent lava-dome collapses generated pyroclastic flows that delivered additional sediment. During the waning phase of explosive activity, modest rainfall triggered an extraordinary sediment flush which swiftly aggraded multiple channels by many meters. Ten kilometer from the volcano, Chaitén River channel aggraded 7 m and the river avulsed through a coastal town. That aggradation and delta growth below the abandoned and avulsed channels allow estimates of postdisturbance traction-load transport rate. On the basis of preeruption bathymetry and remotely sensed measurements...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
Partial pressures of CO2, O2, N2, and Ar were monitored at two locations in the Ogallala aquifer system on the Southern High Plains of Texas. Samples were collected monthly during parts of 1980–1981 from nine depths ranging from 0.6 to 36 meters below land surface. PCO2 was observed to be greater at depth than in the active soil zone and thus appears to contradict the normal process in which CO2 is generated in the soil zone and diffuses upward to the atmosphere and downward to the water table. The δ13C of the CO2 gas was quite uniform and averaged −17.9 per mil. PO2 declined with depth, suggesting in situ generation of CO2 by the oxidation of carbon. Several hypotheses were considered to explain the origin of the...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
Hydraulic tomography is a powerful technique for characterizing heterogeneous hydrogeologic parameters. An explicit trade-off between characterization based on measurement misfit and subjective characterization using prior information is presented. We apply a Bayesian geostatistical inverse approach that is well suited to accommodate a flexible model with the level of complexity driven by the data and explicitly considering uncertainty. Prior information is incorporated through the selection of a parameter covariance model characterizing continuity and providing stability. Often, discontinuities in the parameter field, typically caused by geologic contacts between contrasting lithologic units, necessitate subdivision...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
Data on the specific timing of post-fire flash floods and debris flows are very limited. We describe a method to measure the response times of small burned watersheds to rainfall using a low-cost pressure transducer, which can be installed quickly after a fire. Although the pressure transducer is not designed for sustained sampling at the fast rates ({less than or equal to}2 sec) used at more advanced debris-flow monitoring sites, comparisons with high-data rate stage data show that measured spikes in pressure sampled at 1-min intervals are sufficient to detect the passage of most debris flows and floods. Post-event site visits are used to measure the peak stage and identify flow type based on deposit characteristics....
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
We thank T. N. Narasimhan for his comment on our paper [Konikow and Neuzil, 2007] and for extending the discussion with a historical perspective, additional examples, and some considerations we did not discuss, including implications for water management. We support and agree with the thrust of his comments.
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
From mythology, archeology, and chronicles of early explorers we can learn how early Americans viewed the cause and effect relations of hydrologic phenomena. Hopes and fears are the basis of religion, and it was through religion that water management was first practiced. Early people used their water resources to develop diverse civilizations in various parts of the western hemisphere. Not only was the rise of these earlier civilizations hydrologically influenced, but also the downfall of some was related to natural or man-made hydrological crises in which gods and mythology continued to play a role.
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
A water-balance model is used to simulate time series of water-year runoff for 4 km ?? 4 km grid cells for the conterminous United States during the 1900-2008 period. Model outputs are used to examine the separate effects of precipitation and temperature on runoff variability. Overall, water-year runoff has increased in the conterminous United States and precipitation has accounted for almost all of the variability in water-year runoff during the past century. In contrast, temperature effects on runoff have been small for most locations in the United States even during periods when temperatures for most of the United States increased significantly. Copyright 2011 by the American Geophysical Union.
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
An experimental injection was performed to study the transport of stream water solutes under conditions of significant interaction with streambed sediments in a mountain pool-and-riffle stream. Experiments were conducted in Little Lost Man Creek, Humboldt County, California, in a period of low flow duringwhich only a part of the bank-full channel held active surface flow. The injection of chloride and several trace cations lasted 20 days. In this report we discuss the results of the first 24 hours of the injection and survey the results of the first 10 days. Solute-streambed interactions of two types were observed. First, the physical transport of the conservative tracer, chloride, was affected by intergravel flow...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
The linear programing-superposition method is presented for managing multiple sources of groundwater pollution over time. The method uses any linear solute transport simulation model to generate a unit source-concentration response matrix that is incorporated into a management model. This series of constraints indicates local solute concentration histories that will result from any series of waste injection schedules. The linear program operates on the matrix to arrive at optimal disposal schedules. An example demonstrates application of the method to maximizing groundwater waste disposal while maintaining water quality of local water supplies within desired limits. Flow field variations associated with waste injection...
Categories: Publication; Types: Citation; Tags: Water Resources Research
thumbnail
In the past decade, there has been a growing interest of dam safety officials to incorporate a risk‐based analysis for design‐flood hydrology. Extreme or rare floods, with probabilities in the range of about 10−3 to 10−7 chance of occurrence per year, are of continuing interest to the hydrologic and engineering communities for purposes of planning and design of structures such as dams [National Research Council, 1988]. The National Research Council stresses that as much information as possible about floods needs to be used for evaluation of the risk and consequences of any decision. A regional interdisciplinary paleoflood approach was developed to assist dam safety officials and floodplain managers in their assessments...
Categories: Publication; Types: Citation; Tags: Water Resources Research


map background search result map search result map Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions