Skip to main content
Advanced Search

Filters: Tags: Water Depth (X)

621 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Water depth and depth-averaged water velocity in the lower San Joaquin River, California, collected generally near Greyson Bridge, the Old Fishermen's Club, and Sturgeon Bend. These data were collected using a SonTek M9 Acoustic Doppler Current Profiler (ADCP) May 10-11, 2012, and May 24-25, 2012.
thumbnail
The U.S. Geological Survey obtained measurements of channel geometry, flow velocity, and river discharge from five rivers in Alaska September 18–20, 2016, to support research on remote sensing of river discharge. The streamflow data were acquired from the Knik, Matanuska, Chena, and Salcha Rivers and Montana Creek using TeleDyne RD Instruments Acoustic Doppler Current Profilers (ADCPs), including the RioPro, StreamPro, and RiverRay models. The original *.mmt and *.pd0 format files are provided in this data release. This data release supports the following article: Legleiter, C.J., Kinzel, P.J., and Nelson, J.M., 2017, Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various...
thumbnail
These geospatial data were collected during the May 24, 2017 topographic and hydrographic survey of Saddle River in the vicinity of New Jersey State Route 17 at Ridgewood, NJ.
Nearshore bathymetry is a vital link that joins offshore water depths to coastal topography. Seamless water depth information is a critical input parameter for reliable storm surge models, enables the calculation of sediment budgets and is necessary baseline data for a range of coastal management decisions. Funding from the Western Alaska LCC resulted in the purchase of field equipment capable of shallow water measurements in rural settings, allowing collection of nearshore bathymetry around western Alaska communities. The resulting vector data shape files of nearshore bathymetry for Gambell, Savoonga, Golovin, Wales, Shismaref, and Hooper Bay are available by following the link below.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
These geospatial data were collected during the August 30, 2016 topographic and hydrographic survey of the Wapsipinicon River in the vicinity of US-30 near near Wheatland, IA.
thumbnail
This data release presents beach topography and nearshore bathymetry data from repeated surveys in northern Monterey Bay, California to document changes in shoreline position and coastal morphology as they relate to episodic (storms), seasonal, and interannual and longer (e.g. El Niño) processes. The ongoing monitoring program was initiated in October 2014 with semi-annual surveys performed in late summer (September or October) and Spring (March). Nearshore bathymetry and topography data were collected along a series of shore-perpendicular transects spaced primarily at 50-250 m intervals between Santa Cruz and Moss Landing, California (fig. 1). The transects were located along sandy stretches of the coastline...


map background search result map search result map 2012 ADCP depth and velocity data ADCP data from rivers in Alaska, September 18–20, 2016 siteID-019 Gallatin River at I-90 near Manhattan, MT SiteID-006 Snake River at West River Road, near Shelley, ID SiteID-030 Upper Iowa River, at IA-76 near Dorchester, IA SiteID-031 Wapsipinicon River, at US-30 near Wheatland, IA UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint SiteID-034 Saddle River at NJ17 at Ridgewood, NJ Beach topography and nearshore bathymetry of northern Monterey Bay, California SiteID-034 Saddle River at NJ17 at Ridgewood, NJ SiteID-031 Wapsipinicon River, at US-30 near Wheatland, IA siteID-019 Gallatin River at I-90 near Manhattan, MT SiteID-030 Upper Iowa River, at IA-76 near Dorchester, IA SiteID-006 Snake River at West River Road, near Shelley, ID 2012 ADCP depth and velocity data UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint Beach topography and nearshore bathymetry of northern Monterey Bay, California UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint ADCP data from rivers in Alaska, September 18–20, 2016